Pengguna:Dedhert.Jr/Uji halaman 01/13


Nilai-nilai faktorial yang dipilih dibulatkan dalam notasi ilmiah
0 1
1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40.320
9 362.880
10 3.628.800
11 39.916.800
12 479.001.600
13 6.227.020.800
14 87.178.291.200
15 1.307.674.368.000
16 20.922.789.888.000
17 355.687.428.096.000
18 6.402.373.705.728.000
19 121.645.100.408.832.000
20 2.432.902.008.176.640.000
25 1,551121004×1025
50 3,041409320×1064
70 1,197857167×10100
100 9,332621544×10157
450 1.733368733×101000
1000 4.023872601×102567
3249 6,412337688×1010.000
10000 2,846259681×1035.659
25206 1,205703438×10100.000
100000 2,824229408×10456.573
205023 2,503898932×101.000.004
1000000 8,263931688×105.565.708
10100 1010101,9981097754820

Dalam matematika, faktorial dari bilangan bulat, dilambang sebagai , merupakan hasil kali dari semua bilangan bulat positif yang lebih kecil atau sama dengan . Faktorial dari juga merupakan hasil kali dari dengan faktorial lebih kecil berikutnya:Contohnya,Catatan bahwa untuk nilai adalah 1, menurut konvensi darab kosong.[1]

Faktorial ditemukan dalam beberapa budaya kuno, khususnya di matematika India dalam tulisan karya sastra Jain, dan mistisisme Yahudi dalam buku Talmud yang berjudul Sefer Yetzirah. Operasi faktorial biasanya ditemukan dalam banyak cabang matematika, khususnya kombinatorik. Dalam kombinatorik, faktorial merupakan operasi paling dasar yang dipakai untuk menghitung kemungkinan barisan yang berbeda, sebagai contoh, permutasi dari benda yang berbeda ada . Dalam analisis matematika, faktorial dipakai dalam deret kuasa fungsi eksponensial dan fungsi lain. Faktorial juga memiliki aplikasi terhadap aljabar, teori bilangan, teori peluang, dan ilmu komputer.

Fungsi faktorial dalam matematika dikembangkan pada akhir abad ke-18 dan awal abad ke-19. Aproksimasi Stirling menyediakan sebuah hampiran yang akurat mengenai faktorial dari bilangan yang besar, yang memperlihatkan bahwa pertumbuhan nilainya lebih cepat daripada pertumbuhan eksponensial. Adapula rumus Legendre yang menjelaskan eksponen bilangan prima dalam faktorisasi bilangan prima melalui faktorial, dan rumus tersebut dapat dipakai untuk menghitung jejak nol melalui faktorial. Daniel Bernoulli dan Leonhard Euler menginterpolasi fungsi faktorial menjadi sebuah fungsi kontinu pada bilangan kompleks, kecuali pada bilangan bulat negatif. Fungsi tersebut ialah fungsi gamma (ofset).

Ada banyak fungsi khusus dan barisan bilangan lainnya terkait erat dengan faktorial, di antaranya koefisien binomial, faktorial ganda, faktorial turun, primorial, dan subfaktorial. Implementasi fungsi faktorial biasanya dipakai sebagai contoh tentang tampialn pemrograman komputer yang berbeda, di antaranya dalam kalkulator ilmiah dan scientific computing software libraries. Walaupun faktorial yang besar dihitung secara langsung melalui rumus hasil kali atau rekurensi tidak efisien, faster algorithms are known, matching to within a constant factor the time for fast multiplication algorithms for numbers with the same number of digits.

Sejarah

sunting

Konsep faktorial muncul secara terpisah dalam banyak budaya.

  • Dalam matematika India, salah satu penjelasan tentang faktorial yang paling awal diketahui berasal dari Anuyogadvāra-sūtra,[2] salah satu tulisan karya kesusasteraan Jain, which has been assigned dates varying from 300 BCE to 400 CE.[3] It separates out the sorted and reversed order of a set of items from the other ("mixed") orders, evaluating the number of mixed orders by subtracting two from the usual product formula for the factorial. The product rule for permutations was also described by 6th-century CE Jain monk Jinabhadra.[2] Hindu scholars have been using factorial formulas since at least 1150, when Bhāskara II mentioned factorials in his work Līlāvatī, in connection with a problem of how many ways Vishnu could hold his four characteristic objects (a conch shell, discus, mace, and lotus flower) in his four hands, and a similar problem for a ten-handed god.[4]
  • In the mathematics of the Middle East, the Hebrew mystic book of creation Sefer Yetzirah, from the Talmudic period (200 to 500 CE), lists factorials up to 7! as part of an investigation into the number of words that can be formed from the Hebrew alphabet.[5][6] Factorials were also studied for similar reasons by 8th-century Arab grammarian Al-Khalil ibn Ahmad al-Farahidi.[5] Arab mathematician Ibn al-Haytham (also known as Alhazen, c. 965 – c. 1040) was the first to formulate Wilson's theorem connecting the factorials with the prime numbers.[7]
  • In Europe, although Greek mathematics included some combinatorics, and Plato famously used 5040 (a factorial) as the population of an ideal community, in part because of its divisibility properties,[8] there is no direct evidence of ancient Greek study of factorials. Instead, the first work on factorials in Europe was by Jewish scholars such as Shabbethai Donnolo, explicating the Sefer Yetzirah passage.[9] In 1677, British author Fabian Stedman described the application of factorials to change ringing, a musical art involving the ringing of several tuned bells.[10][11]

From the late 15th century onward, factorials became the subject of study by western mathematicians. In a 1494 treatise, Italian mathematician Luca Pacioli calculated factorials up to 11!, in connection with a problem of dining table arrangements.[12] Christopher Clavius discussed factorials in a 1603 commentary on the work of Johannes de Sacrobosco, and in the 1640s, French polymath Marin Mersenne published large (but not entirely correct) tables of factorials, up to 64!, based on the work of Clavius.[13] The power series for the exponential function, with the reciprocals of factorials for its coefficients, was first formulated in 1676 by Isaac Newton in a letter to Gottfried Wilhelm Leibniz.[14] Other important works of early European mathematics on factorials include extensive coverage in a 1685 treatise by John Wallis, a study of their approximate values for large values of   by Abraham de Moivre in 1721, a 1729 letter from James Stirling to de Moivre stating what became known as Stirling's approximation, and work at the same time by Daniel Bernoulli and Leonhard Euler formulating the continuous extension of the factorial function to the gamma function.[15] Adrien-Marie Legendre included Legendre's formula, describing the exponents in the factorization of factorials into prime powers, in an 1808 text on number theory.[16]

  sebagai notasi faktorial diperkenalkan pada tahun 1808 oleh Christian Kramp, seorang matematikawan asal Prancis.[17] Many other notations have also been used. Another later notation, in which the argument of the factorial was half-enclosed by the left and bottom sides of a box, was popular for some time in Britain and America but fell out of use, perhaps because it is difficult to typeset.[17] Kata "faktorial" (berasal dari bahasa Prancis: factorielle) dipakai pertama kali pada tahun 1800 oleh Louis François Antoine Arbogast,[18] dalam karya pertamanya tentang rumus Faà di Bruno,[19] but referring to a more general concept of products of arithmetic progressions. The "factors" that this name refers to are the terms of the product formula for the factorial.[20]

Definisi

sunting

Fungsi faktorial suatu bilangan bulat positif   didefinisikan melalui hasil kali[21] Rumus di atas dapat ditulis lebih singkat melalui notasi kapital Pi[21] If this product formula is changed to keep all but the last term, it would define a product of the same form, for a smaller factorial. This leads to a recurrence relation, according to which each value of the factorial function can be obtained by multiplying the previous value by  :[22] Sebagai contoh,  .

Faktorial dari 0

sunting

Faktorial dari   adalah  , atau dapat dituliskan dalam bentuk simbol,  . Ada beberapa alasan mengenai definisi ini:

  • Untuk  , definisi   sebagai hasil kali melibatkan hasil kali tanpa adanya bilangan sama sekali, dan demikian definisi tersebut merupakan sebuah contoh konvensi yang luas bahwa darab kosong, darab tanpa adanya faktor, sama dengan identitas perkaliannya.[23]
  • Ada setidaknya satu permutasi dari nol benda, yang berarti tidak ada benda yang diurutkan dan tidak ada benda yang disusun kembali.[22]
  • Konvensi ini membuat banyak identitas dalam kombinatorik, yang valid untuk semua pilihan valid mengenai parameternya. Sebagai contoh, banyaknya cara untuk memilih semua   anggota dari sebuah himpunan dari   adalah   identitas koefisien binomial yang akan valid karena  .[24]
  • Karena  , relasi rekurensi mengenai faktorial tetap valid di  . Therefore, with this convention, a recursive computation of the factorial needs to have only the value for zero as a base case, simplifying the computation and avoiding the need for additional special cases.[25]
  • Setting   allows for the compact expression of many formulae, such as the exponential function, as a power series:  [14]
  • This choice matches the gamma function  , and the gamma function must have this value to be a continuous function.[26]

Penerapan

sunting

The earliest uses of the factorial function involve counting permutations: there are   different ways of arranging   distinct objects into a sequence.[27] Factorials appear more broadly in many formulas in combinatorics, to account for different orderings of objects. For instance the binomial coefficients   count the  -element combinations (subsets of   elements) from a set with   elements, and can be computed from factorials using the formula[28] The Stirling numbers of the first kind sum to the factorials, and count the permutations of   grouped into subsets with the same numbers of cycles.[29] Another combinatorial application is in counting derangements, permutations that do not leave any element in its original position; the number of derangements of   items is the nearest integer to  .[30] In algebra, the factorials arise through the binomial theorem, which uses binomial coefficients to expand powers of sums.[31] They also occur in the coefficients used to relate certain families of polynomials to each other, for instance in Newton's identities for symmetric polynomials.[32] Their use in counting permutations can also be restated algebraically: the factorials are the orders of finite symmetric groups.[33] In calculus, factorials occur in Faà di Bruno's formula for chaining higher derivatives.[34] In mathematical analysis, factorials frequently appear in the denominators of power series, most notably in the series for the exponential function,[35] and in the coefficients of other Taylor series (in particular those of the trigonometric and hyperbolic functions), where they cancel factors of   coming from the  th derivative of  .[36] This usage of factorials in power series connects back to analytic combinatorics through the exponential generating function, which for a combinatorial class with   elements of size   is defined as the power series[37] In number theory, the most salient property of factorials is the divisibility of   by all positive integers up to  , described more precisely for prime factors by Legendre's formula. It follows that arbitrarily large prime numbers can be found as the prime factors of the numbers  , leading to a proof of Euclid's theorem that the number of primes is infinite.[38] When   is itself prime it is called a factorial prime;[39] relatedly, Brocard's problem, also posed by Srinivasa Ramanujan, concerns the existence of square numbers of the form  .[40] In contrast, the numbers   must all be composite, proving the existence of arbitrarily large prime gaps.[41] An elementary proof of Bertrand's postulate on the existence of a prime in any interval of the form  , one of the first results of Paul Erdős, was based on the divisibility properties of factorials.[42][43] The factorial number system is a mixed radix notation for numbers in which the place values of each digit are factorials.[44]

Factorials are used extensively in probability theory, for instance in the Poisson distribution[45] and in the probabilities of random permutations.[46] In computer science, beyond appearing in the analysis of brute-force searches over permutations,[47] factorials arise in the lower bound of   on the number of comparisons needed to comparison sort a set of   items,[48] and in the analysis of chained hash tables, where the distribution of keys per cell can be accurately approximated by a Poisson distribution.[49] Moreover, factorials naturally appear in formulae from quantum and statistical physics, where one often considers all the possible permutations of a set of particles. In statistical mechanics, calculations of entropy such as Boltzmann's entropy formula or the Sackur–Tetrode equation must correct the count of microstates by dividing by the factorials of the numbers of each type of indistinguishable particle to avoid the Gibbs paradox. Quantum physics provides the underlying reason for why these corrections are necessary.[50]

Sifat-sifat

sunting

Pertumbuhan dan aproksimasi

sunting
 
Comparison of the factorial, Stirling's approximation, and the simpler approximation  , on a doubly logarithmic scale
 
Relative error in a truncated Stirling series vs. number of terms

As a function of  , the factorial has faster than exponential growth, but grows more slowly than a double exponential function.[51] Its growth rate is similar to  , but slower by an exponential factor. One way of approaching this result is by taking the natural logarithm of the factorial, which turns its product formula into a sum, and then estimating the sum by an integral: Exponentiating the result (and ignoring the negligible   term) approximates   as  .[52] More carefully bounding the sum both above and below by an integral, using the trapezoid rule, shows that this estimate needs a correction term proportional to  . The constant of proportionality for this correction can be found from the Wallis product, which expresses   as a limiting ratio of factorials and powers of two. The result of these corrections is Stirling's approximation:[53] Here, the   symbol means that, as   goes to infinity, the ratio between the left and right sides approaches one in the limit. Stirling's formula provides the first term in an asymptotic series that becomes even more accurate when taken to greater numbers of terms:[54] An alternative version uses only odd exponents in the correction terms:[54] Many other variations of these formulas have also been developed, by Srinivasa Ramanujan, Bill Gosper, and others.[54]

The binary logarithm of the factorial, used to analyze comparison sorting, can be very accurately estimated using Stirling's approximation. In the formula below, the   term invokes big O notation.[55] 

Keterbagian dan digit

sunting

The product formula for the factorial implies that   is divisible by all prime numbers that are at most  , and by no larger prime numbers.[56] More precise information about its divisibility is given by Legendre's formula, which gives the exponent of each prime   in the prime factorization of   as[57][58] Here   denotes the sum of the base-  digits of  , and the exponent given by this formula can also be interpreted in advanced mathematics as the p-adic valuation of the factorial.[58] Applying Legendre's formula to the product formula for binomial coefficients produces Kummer's theorem, a similar result on the exponent of each prime in the factorization of a binomial coefficient.[59]

The special case of Legendre's formula for   gives the number of trailing zeros in the decimal representation of the factorials.[60] According to this formula, the number of zeros can be obtained by subtracting the base-5 digits of   from  , and dividing the result by four.[61] Legendre's formula implies that the exponent of the prime   is always larger than the exponent for  , so each factor of five can be paired with a factor of two to produce one of these trailing zeros.[60] The leading digits of the factorials are distributed according to Benford's law.[62] Every sequence of digits, in any base, is the sequence of initial digits of some factorial number in that base.[63]

Another result on divisibility of factorials, Wilson's theorem, states that   is divisible by   if and only if   is a prime number.[56] For any given integer  , the Kempner function of   is given by the smallest   for which   divides  .[64] For almost all numbers (all but a subset of exceptions with asymptotic density zero), it coincides with the largest prime factor of  .[65]

The product of two factorials,  , always evenly divides  .[66] There are infinitely many factorials that equal the product of other factorials: if   is itself any product of factorials, then   equals that same product multiplied by one more factorial,  . The only known examples of factorials that are products of other factorials but are not of this "trivial" form are  ,  , and  .[67] It would follow from the abc conjecture that there are only finitely many nontrivial examples.[68]

The greatest common divisor of the values of a primitive polynomial of degree   over the integers evenly divides  .[66]

Interpolasi kontinu dan perumuman bukan bilangan bulat

sunting
 
The gamma function (shifted one unit left to match the factorials) continuously interpolates the factorial to non-integer values
 
Absolute values of the complex gamma function, showing poles at non-positive integers

There are infinitely many ways to extend the factorials to a continuous function.[69] The most widely used of these[70] uses the gamma function, which can be defined for positive real numbers as the integral The resulting function is related to the factorial of a non-negative integer   by the equation which can be used as a definition of the factorial for non-integer arguments. At all values   for which both   and   are defined, the gamma function obeys the functional equation generalizing the recurrence relation for the factorials.[69]

The same integral converges more generally for any complex number   whose real part is positive. It can be extended to the non-integer points in the rest of the complex plane by solving for Euler's reflection formula However, this formula cannot be used at integers because, for them, the   term would produce a division by zero. The result of this extension process is an analytic function, the analytic continuation of the integral formula for the gamma function. It has a nonzero value at all complex numbers, except for the non-positive integers where it has simple poles. Correspondingly, this provides a definition for the factorial at all complex numbers other than the negative integers.[70] One property of the gamma function, distinguishing it from other continuous interpolations of the factorials, is given by the Bohr–Mollerup theorem, which states that the gamma function (offset by one) is the only log-convex function on the positive real numbers that interpolates the factorials and obeys the same functional equation. A related uniqueness theorem of Helmut Wielandt states that the complex gamma function and its scalar multiples are the only holomorphic functions on the positive complex half-plane that obey the functional equation and remain bounded for complex numbers with real part between 1 and 2.[71]

Other complex functions that interpolate the factorial values include Hadamard's gamma function, which is an entire function over all the complex numbers, including the non-positive integers.[72][73] In the p-adic numbers, it is not possible to continuously interpolate the factorial function directly, because the factorials of large integers (a dense subset of the p-adics) converge to zero according to Legendre's formula, forcing any continuous function that is close to their values to be zero everywhere. Instead, the p-adic gamma function provides a continuous interpolation of a modified form of the factorial, omitting the factors in the factorial that are divisible by p.[74]

The digamma function is the logarithmic derivative of the gamma function. Just as the gamma function provides a continuous interpolation of the factorials, offset by one, the digamma function provides a continuous interpolation of the harmonic numbers, offset by the Euler–Mascheroni constant.[75]

Perhitungan

sunting
 
TI SR-50A, a 1975 calculator with a factorial key (third row, center right)

The factorial function is a common feature in scientific calculators.[76] It is also included in scientific programming libraries such as the Python mathematical functions module[77] and the Boost C++ library.[78] If efficiency is not a concern, computing factorials is trivial: just successively multiply a variable initialized to   by the integers up to  . The simplicity of this computation makes it a common example in the use of different computer programming styles and methods.[79]

The computation of   can be expressed in pseudocode using iteration[80] as

define factorial(n):
f := 1
for i := 1, 2, 3, ... n:
f := f × i
return f

or using recursion[81] based on its recurrence relation as

define factorial(n):
if n = 0 return 1
return n × factorial(n − 1)

Other methods suitable for its computation include memoization,[82] dynamic programming,[83] and functional programming.[84] The computational complexity of these algorithms may be analyzed using the unit-cost random-access machine model of computation, in which each arithmetic operation takes constant time and each number uses a constant amount of storage space. In this model, these methods can compute   in time  , and the iterative version uses space  . Unless optimized for tail recursion, the recursive version takes linear space to store its call stack.[85] However, this model of computation is only suitable when   is small enough to allow   to fit into a machine word.[86] The values 12! and 20! are the largest factorials that can be stored in, respectively, the 32-bit[87] and 64-bit integers.[88] Floating point can represent larger factorials, but approximately rather than exactly, and will still overflow for factorials larger than  .[87]

The exact computation of larger factorials involves arbitrary-precision arithmetic, and its time can be analyzed as a function of the number of digits or bits in the result.[88] By Stirling's formula,   has   bits.[89] The Schönhage–Strassen algorithm can produce a  -bit product in time  , and faster multiplication algorithms taking time   are known.[90] However, computing the factorial involves repeated products, rather than a single multiplication, so these time bounds do not apply directly. In this setting, computing   by multiplying the numbers from 1 to   in sequence is inefficient, because it involves   multiplications, a constant fraction of which take time   each, giving total time  . A better approach is to perform the multiplications as a divide-and-conquer algorithm that multiplies a sequence of   numbers by splitting it into two subsequences of   numbers, multiplies each subsequence, and combines the results with one last multiplication. This approach to the factorial takes total time  : one logarithm comes from the number of bits in the factorial, a second comes from the multiplication algorithm, and a third comes from the divide and conquer.[91]

Even better efficiency is obtained by computing n! from its prime factorization, based on the principle that exponentiation by squaring is faster than expanding an exponent into a product.[89][92] An algorithm for this by Arnold Schönhage begins by finding the list of the primes up to  , for instance using the sieve of Eratosthenes, and uses Legendre's formula to compute the exponent for each prime. Then it computes the product of the prime powers with these exponents, using a recursive algorithm, as follows:

  • Use divide and conquer to compute the product of the primes whose exponents are odd
  • Divide all of the exponents by two (rounding down to an integer), recursively compute the product of the prime powers with these smaller exponents, and square the result
  • Multiply together the results of the two previous steps

The product of all primes up to   is an  -bit number, by the prime number theorem, so the time for the first step is  , with one logarithm coming from the divide and conquer and another coming from the multiplication algorithm. In the recursive calls to the algorithm, the prime number theorem can again be invoked to prove that the numbers of bits in the corresponding products decrease by a constant factor at each level of recursion, so the total time for these steps at all levels of recursion adds in a geometric series to  . The time for the squaring in the second step and the multiplication in the third step are again  , because each is a single multiplication of a number with   bits. Again, at each level of recursion the numbers involved have a constant fraction as many bits (because otherwise repeatedly squaring them would produce too large a final result) so again the amounts of time for these steps in the recursive calls add in a geometric series to  . Consequentially, the whole algorithm takes time  , proportional to a single multiplication with the same number of bits in its result.[92]

Fungsi dan barisan yang berkaitan

sunting

Ada beberapa barisan bilangan bulat lainnya yang menyerupai atau berkaitan dengan faktorial:

Fakatorial selang-seling
The alternating factorial is the absolute value of the alternating sum of the first   factorials,  . These have mainly been studied in connection with their primality; only finitely many of them can be prime, but a complete list of primes of this form is not known.[93]
Faktorial Bhargava
The Bhargava factorials are a family of integer sequences defined by Manjul Bhargava with similar number-theoretic properties to the factorials, including the factorials themselves as a special case.[66]
Faktorial ganda
The product of all the odd integers up to some odd positive integer   is called the double factorial of  , and denoted by  .[94] That is,   For example, 9!! = 1 × 3 × 5 × 7 × 9 = 945. Double factorials are used in trigonometric integrals,[95] in expressions for the gamma function at half-integers and the volumes of hyperspheres,[96] and in counting binary trees and perfect matchings.[94][97]
Faktorial eksponensial
Just as triangular numbers sum the numbers from   to  , and factorials take their product, the exponential factorial exponentiates. The exponential factorial of  , denoted as  , is defined recursively as  , with the base case  . For example,   These numbers grow much more quickly than regular factorials.[98]
Falling factorial
The notations   or   are sometimes used to represent the product of the   integers counting up to and including  , equal to  . This is also known as a falling factorial or backward factorial, and the   notation is a Pochhammer symbol.[99] Falling factorials count the number of different sequences of   distinct items that can be drawn from a universe of   items.[100] They occur as coefficients in the higher derivatives of polynomials,[101] and in the factorial moments of random variables.[102]
Hiperfaktorial
The hyperfactorial of   is the product  . These numbers form the discriminants of Hermite polynomials.[103] They can be continuously interpolated by the K-function,[104] and obey analogues to Stirling's formula[105] and Wilson's theorem.[106]
Bilangan Jordan–Pólya
The Jordan–Pólya numbers are the products of factorials, allowing repetitions. Every tree has a symmetry group whose number of symmetries is a Jordan–Pólya number, and every Jordan–Pólya number counts the symmetries of some tree.[107]
Primorial
The primorial   is the product of prime numbers less than or equal to  ; this construction gives them some similar divisibility properties to factorials,[108] but unlike factorials they are squarefree.[109] As with the factorial primes  , researchers have studied primorial primes  .[39]
Subfaktorial
The subfactorial yields the number of derangements of a set of   objects. It is sometimes denoted  , and equals the closest integer to  .[30]
Superfaktorial
The superfactorial of   is the product of the first   factorials. The superfactorials are continuously interpolated by the Barnes G-function.[110]

Referensi

sunting
  1. ^ Graham, Ronald L.; Knuth, Donald E.; Patashnik, Oren (1988). Concrete Mathematics. Reading, MA: Addison-Wesley. hlm. 111. ISBN 0-201-14236-8. 
  2. ^ a b Datta, Bibhutibhusan; Singh, Awadhesh Narayan (2019). "Use of permutations and combinations in India". Dalam Kolachana, Aditya; Mahesh, K.; Ramasubramanian, K. Studies in Indian Mathematics and Astronomy: Selected Articles of Kripa Shankar Shukla. Sources and Studies in the History of Mathematics and Physical Sciences. Springer Singapore. hlm. 356–376. doi:10.1007/978-981-13-7326-8_18.  . Revised by K. S. Shukla from a paper in Indian Journal of History of Science 27 (3): 231–249, 1992, MR1189487. See p. 363.
  3. ^ Jadhav, Dipak (August 2021). "Jaina Thoughts on Unity Not Being a Number". History of Science in South Asia. University of Alberta Libraries. 9: 209–231. doi:10.18732/hssa67.  . See discussion of dating on p. 211.
  4. ^ Biggs, Norman L. (May 1979). "The roots of combinatorics". Historia Mathematica. 6 (2): 109–136. doi:10.1016/0315-0860(79)90074-0 . MR 0530622. 
  5. ^ a b Katz, Victor J. (June 1994). "Ethnomathematics in the classroom". For the Learning of Mathematics. 14 (2): 26–30. JSTOR 40248112. 
  6. ^ Sefer Yetzirah at Wikisource, Chapter IV, Section 4
  7. ^ Rashed, Roshdi (1980). "Ibn al-Haytham et le théorème de Wilson". Archive for History of Exact Sciences (dalam bahasa Prancis). 22 (4): 305–321. doi:10.1007/BF00717654. MR 0595903. 
  8. ^ Acerbi, F. (2003). "On the shoulders of Hipparchus: a reappraisal of ancient Greek combinatorics". Archive for History of Exact Sciences. 57 (6): 465–502. doi:10.1007/s00407-003-0067-0. JSTOR 41134173. MR 2004966. 
  9. ^ Katz, Victor J. (2013). "Chapter 4: Jewish combinatorics". Dalam Wilson, Robin; Watkins, John J. Combinatorics: Ancient & Modern. Oxford University Press. hlm. 109–121. ISBN 978-0-19-965659-2.  See p. 111.
  10. ^ Hunt, Katherine (May 2018). "The Art of Changes: Bell-Ringing, Anagrams, and the Culture of Combination in Seventeenth-Century England". Journal of Medieval and Early Modern Studies. 48 (2): 387–412. doi:10.1215/10829636-4403136. 
  11. ^ Stedman, Fabian (1677). Campanalogia. London. hlm. 6–9.  The publisher is given as "W.S." who may have been William Smith, possibly acting as agent for the Society of College Youths, to which society the "Dedicatory" is addressed.
  12. ^ Knobloch, Eberhard (2013). "Chapter 5: Renaissance combinatorics". Dalam Wilson, Robin; Watkins, John J. Combinatorics: Ancient & Modern. Oxford University Press. hlm. 123–145. ISBN 978-0-19-965659-2.  See p. 126.
  13. ^ Knobloch 2013, hlm. 130–133.
  14. ^ a b Ebbinghaus, H.-D.; Hermes, H.; Hirzebruch, F.; Koecher, M.; Mainzer, K.; Neukirch, J.; Prestel, A.; Remmert, R. (1990). Numbers. Graduate Texts in Mathematics. 123. New York: Springer-Verlag. hlm. 131. doi:10.1007/978-1-4612-1005-4. ISBN 0-387-97202-1. MR 1066206. 
  15. ^ Dutka, Jacques (1991). "The early history of the factorial function". Archive for History of Exact Sciences. 43 (3): 225–249. doi:10.1007/BF00389433. JSTOR 41133918. MR 1171521. 
  16. ^ Dickson, Leonard E. (1919). "Chapter IX: Divisibility of factorials and multinomial coefficients". History of the Theory of Numbers. 1. Carnegie Institution of Washington. hlm. 263–278.  See in particular p. 263.
  17. ^ a b Cajori, Florian (1929). "448–449. Factorial "n"". A History of Mathematical Notations, Volume II: Notations Mainly in Higher Mathematics. The Open Court Publishing Company. hlm. 71–77. 
  18. ^ Miller, Jeff. "Earliest Known Uses of Some of the Words of Mathematics (F)". MacTutor History of Mathematics archive. University of St Andrews. 
  19. ^ Craik, Alex D. D. (2005). "Prehistory of Faà di Bruno's formula". The American Mathematical Monthly. 112 (2): 119–130. doi:10.1080/00029890.2005.11920176. JSTOR 30037410. MR 2121322. 
  20. ^ Arbogast, Louis François Antoine (1800). Du calcul des dérivations (dalam bahasa Prancis). Strasbourg: L'imprimerie de Levrault, frères. hlm. 364–365. 
  21. ^ a b Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama gkp2
  22. ^ a b Hamkins, Joel David (2020). Proof and the Art of Mathematics. Cambridge, Massachusetts: MIT Press. hlm. 50. ISBN 978-0-262-53979-1. MR 4205951. 
  23. ^ Dorf, Richard C. (2003). "Factorials". CRC Handbook of Engineering Tables. CRC Press. hlm. 5-5. ISBN 978-0-203-00922-2. 
  24. ^ Goldenberg, E. Paul; Carter, Cynthia J. (October 2017). "A student asks about (−5)!". The Mathematics Teacher. 111 (2): 104–110. doi:10.5951/mathteacher.111.2.0104. JSTOR 10.5951/mathteacher.111.2.0104. 
  25. ^ Haberman, Bruria; Averbuch, Haim (2002). "The case of base cases: Why are they so difficult to recognize? Student difficulties with recursion". Dalam Caspersen, Michael E.; Joyce, Daniel T.; Goelman, Don; Utting, Ian. Proceedings of the 7th Annual SIGCSE Conference on Innovation and Technology in Computer Science Education, ITiCSE 2002, Aarhus, Denmark, June 24-28, 2002. Association for Computing Machinery. hlm. 84–88. doi:10.1145/544414.544441. 
  26. ^ Farrell, Orin J.; Ross, Bertram (1971). Solved Problems in Analysis: As Applied to Gamma, Beta, Legendre and Bessel Functions. Dover Books on Mathematics. Courier Corporation. hlm. 10. ISBN 978-0-486-78308-6. 
  27. ^ Conway, John H.; Guy, Richard (1998). "Factorial numbers". The Book of Numbers (dalam bahasa Inggris). Springer Science & Business Media. hlm. 55–56. ISBN 978-0-387-97993-9. 
  28. ^ Graham, Knuth & Patashnik 1988, hlm. 156.
  29. ^ Riordan, John (1958). An Introduction to Combinatorial Analysis. Wiley Publications in Mathematical Statistics. Chapman & Hall. hlm. 76. ISBN 9781400854332. MR 0096594. 
  30. ^ a b Graham, Knuth & Patashnik 1988, hlm. 195.
  31. ^ Graham, Knuth & Patashnik 1988, hlm. 162.
  32. ^ Randić, Milan (1987). "On the evaluation of the characteristic polynomial via symmetric function theory". Journal of Mathematical Chemistry. 1 (1): 145–152. doi:10.1007/BF01205340. MR 0895533. 
  33. ^ Hill, Victor E. (2000). "8.1 Proposition: Symmetric group Sn". Groups and Characters. Chapman & Hall. hlm. 70. ISBN 978-1-351-44381-4. MR 1739394. 
  34. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama craik2
  35. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama exponential-series2
  36. ^ Christensen, Kim; Moloney, Nicholas R. (2005). "Appendix A: Taylor expansion". Complexity and Criticality. Advanced physics texts. 1. Imperial College Press. hlm. 341. ISBN 978-1-86094-504-5. 
  37. ^ Wilf, Herbert S. (2006). generatingfunctionology (edisi ke-3rd). Wellesley, Massachusetts: A K Peters. hlm. 22. ISBN 978-1-56881-279-3. MR 2172781. 
  38. ^ Ore, Øystein (1948). Number Theory and Its History. New York: McGraw-Hill. hlm. 66. ISBN 9780486656205. MR 0026059. 
  39. ^ a b Caldwell, Chris K.; Gallot, Yves (2002). "On the primality of   and  ". Mathematics of Computation. 71 (237): 441–448. doi:10.1090/S0025-5718-01-01315-1. MR 1863013. 
  40. ^ Guy, Richard K. (2004). "D25: Equations involving factorial  ". Unsolved Problems in Number Theory. Problem Books in Mathematics. 1 (edisi ke-3rd). New York: Springer-Verlag. hlm. 301–302. doi:10.1007/978-0-387-26677-0. ISBN 0-387-20860-7. MR 2076335. 
  41. ^ Neale, Vicky (2017). Closing the Gap: The Quest to Understand Prime Numbers. Oxford University Press. hlm. 146–147. ISBN 978-0-19-878828-7. 
  42. ^ Erdős, Pál (1932). "Beweis eines Satzes von Tschebyschef" [Proof of a theorem of Chebyshev] (PDF). Acta Litt. Sci. Szeged (dalam bahasa Jerman). 5: 194–198. Zbl 0004.10103. 
  43. ^ Chvátal, Vašek (2021). "1.5: Erdős's proof of Bertrand's postulate". The Discrete Mathematical Charms of Paul Erdős: A Simple Introduction. Cambridge, England: Cambridge University Press. hlm. 7–10. doi:10.1017/9781108912181. ISBN 978-1-108-83183-3. MR 4282416. 
  44. ^ Fraenkel, Aviezri S. (1985). "Systems of numeration". The American Mathematical Monthly. 92 (2): 105–114. doi:10.1080/00029890.1985.11971550. JSTOR 2322638. MR 0777556. 
  45. ^ Pitman, Jim (1993). "3.5: The Poisson distribution". Probability. New York: Springer. hlm. 222–236. doi:10.1007/978-1-4612-4374-8. ISBN 978-0-387-94594-1. 
  46. ^ Pitman 1993, hlm. 153.
  47. ^ Kleinberg, Jon; Tardos, Éva (2006). Algorithm Design. Addison-Wesley. hlm. 55. 
  48. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama knuth-sorting
  49. ^ Sedgewick, Robert; Wayne, Kevin (2011). Algorithms (edisi ke-4th). Addison-Wesley. hlm. 466. ISBN 978-0-13-276256-4. 
  50. ^ Kardar, Mehran (2007). Statistical Physics of Particles. Cambridge University Press. hlm. 107–110, 181–184. ISBN 978-0-521-87342-0. OCLC 860391091. 
  51. ^ Cameron, Peter J. (1994). "2.4: Orders of magnitude". Combinatorics: Topics, Techniques, Algorithms. Cambridge University Press. hlm. 12–14. ISBN 978-0-521-45133-8. 
  52. ^ Magnus, Robert (2020). "11.10: Stirling's approximation". Fundamental Mathematical Analysis. Springer Undergraduate Mathematics Series. Cham: Springer. hlm. 391. doi:10.1007/978-3-030-46321-2. ISBN 978-3-030-46321-2. MR 4178171. 
  53. ^ Palmer, Edgar M. (1985). "Appendix II: Stirling's formula". Graphical Evolution: An introduction to the theory of random graphs. Wiley-Interscience Series in Discrete Mathematics. Chichester: John Wiley & Sons. hlm. 127–128. ISBN 0-471-81577-2. MR 0795795. 
  54. ^ a b c Chen, Chao-Ping; Lin, Long (2012). "Remarks on asymptotic expansions for the gamma function". Applied Mathematics Letters. 25 (12): 2322–2326. doi:10.1016/j.aml.2012.06.025. MR 2967837. 
  55. ^ Knuth, Donald E. (1998). The Art of Computer Programming, Volume 3: Sorting and Searching (edisi ke-2nd). Addison-Wesley. hlm. 182. ISBN 978-0-321-63578-5. 
  56. ^ a b Beiler, Albert H. (1966). Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover Recreational Math Series (edisi ke-2nd). Courier Corporation. hlm. 49. ISBN 978-0-486-21096-4. 
  57. ^ Chvátal 2021. "1.4: Legendre's formula". pp. 6–7.
  58. ^ a b Robert, Alain M. (2000). "3.1: The  -adic valuation of a factorial". A Course in  -adic Analysis. Graduate Texts in Mathematics. 198. New York: Springer-Verlag. hlm. 241–242. doi:10.1007/978-1-4757-3254-2. ISBN 0-387-98669-3. MR 1760253. 
  59. ^ Peitgen, Heinz-Otto; Jürgens, Hartmut; Saupe, Dietmar (2004). "Kummer's result and Legendre's identity". Chaos and Fractals: New Frontiers of Science. New York: Springer. hlm. 399–400. doi:10.1007/b97624. ISBN 978-1-4684-9396-2. 
  60. ^ a b Koshy, Thomas (2007). "Example 3.12". Elementary Number Theory with Applications (edisi ke-2nd). Elsevier. hlm. 178. ISBN 978-0-08-054709-1. 
  61. ^ Sloane, N.J.A. (ed.). "Sequence A027868 (Number of trailing zeros in n!; highest power of 5 dividing n!)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  62. ^ Diaconis, Persi (1977). "The distribution of leading digits and uniform distribution mod 1". Annals of Probability. 5 (1): 72–81. doi:10.1214/aop/1176995891. MR 0422186. 
  63. ^ Bird, R. S. (1972). "Integers with given initial digits". The American Mathematical Monthly. 79 (4): 367–370. doi:10.1080/00029890.1972.11993051. JSTOR 2978087. MR 0302553. 
  64. ^ Kempner, A. J. (1918). "Miscellanea". The American Mathematical Monthly. 25 (5): 201–210. doi:10.2307/2972639. JSTOR 2972639. 
  65. ^ Erdős, Paul; Kastanas, Ilias (1994). "The smallest factorial that is a multiple of n (solution to problem 6674)" (PDF). The American Mathematical Monthly. 101: 179. doi:10.2307/2324376. JSTOR 2324376. .
  66. ^ a b c Bhargava, Manjul (2000). "The factorial function and generalizations". The American Mathematical Monthly. 107 (9): 783–799. CiteSeerX 10.1.1.585.2265 . doi:10.2307/2695734. JSTOR 2695734. 
  67. ^ Guy 2004. "B23: Equal products of factorials". p. 123.
  68. ^ Luca, Florian (2007). "On factorials which are products of factorials". Mathematical Proceedings of the Cambridge Philosophical Society. 143 (3): 533–542. Bibcode:2007MPCPS.143..533L. doi:10.1017/S0305004107000308. MR 2373957. 
  69. ^ a b Davis, Philip J. (1959). "Leonhard Euler's integral: A historical profile of the gamma function". The American Mathematical Monthly. 66 (10): 849–869. doi:10.1080/00029890.1959.11989422. JSTOR 2309786. MR 0106810. 
  70. ^ a b Borwein, Jonathan M.; Corless, Robert M. (2018). "Gamma and factorial in the Monthly". The American Mathematical Monthly. 125 (5): 400–424. arXiv:1703.05349 . doi:10.1080/00029890.2018.1420983. MR 3785875. 
  71. ^ Remmert, Reinhold (1996). "Wielandt's theorem about the  -function". The American Mathematical Monthly. 103 (3): 214–220. doi:10.1080/00029890.1996.12004726. JSTOR 2975370. MR 1376175. 
  72. ^ Hadamard, J. (1968). "Sur l'expression du produit 1·2·3· · · · ·(n−1) par une fonction entière" (PDF). Œuvres de Jacques Hadamard (dalam bahasa Prancis). Paris: Centre National de la Recherche Scientifiques. 
  73. ^ Alzer, Horst (2009). "A superadditive property of Hadamard's gamma function". Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. 79 (1): 11–23. doi:10.1007/s12188-008-0009-5. MR 2541340. 
  74. ^ Robert 2000. "7.1: The gamma function  ". pp. 366–385.
  75. ^ Ross, Bertram (1978). "The psi function". Mathematics Magazine. 51 (3): 176–179. doi:10.1080/0025570X.1978.11976704. JSTOR 2689999. MR 1572267. 
  76. ^ Brase, Charles Henry; Brase, Corrinne Pellillo (2014). Understandable Statistics: Concepts and Methods (edisi ke-11th). Cengage Learning. hlm. 182. ISBN 978-1-305-14290-9. 
  77. ^ "math — Mathematical functions". Python 3 Documentation: The Python Standard Library. Diakses tanggal 2021-12-21. 
  78. ^ "Factorial". Boost 1.78.0 Documentation: Math Special Functions. Diakses tanggal 2021-12-21. 
  79. ^ Addis, Tom; Addis, Jan (2009). Drawing Programs: The Theory and Practice of Schematic Functional Programming. Springer. hlm. 149–150. ISBN 978-1-84882-618-2. 
  80. ^ Chapman, Stephen J. (2019). "Example 5.2: The factorial function". MATLAB Programming for Engineers (edisi ke-6th). Cengage Learning. hlm. 215. ISBN 978-0-357-03052-3. 
  81. ^ Hey, Tony; Pápay, Gyuri (2014). The Computing Universe: A Journey through a Revolution. Cambridge University Press. hlm. 64. ISBN 9781316123225. 
  82. ^ Bolboaca, Alexandru (2019). Hands-On Functional Programming with C++: An effective guide to writing accelerated functional code using C++17 and C++20. Packt Publishing. hlm. 188. ISBN 978-1-78980-921-3. 
  83. ^ Gray, John W. (2014). Mastering Mathematica: Programming Methods and Applications. Academic Press. hlm. 233–234. ISBN 978-1-4832-1403-0. 
  84. ^ Torra, Vicenç (2016). Scala From a Functional Programming Perspective: An Introduction to the Programming Language. Lecture Notes in Computer Science. 9980. Springer. hlm. 96. ISBN 978-3-319-46481-7. 
  85. ^ Sussman, Gerald Jay (1982). "LISP, programming, and implementation". Functional Programming and Its Applications: An Advanced Course. CREST Advanced Courses. Cambridge University Press. hlm. 29–72. ISBN 978-0-521-24503-6.  See in particular p. 34.
  86. ^ Chaudhuri, Ranjan (June 2003). "Do the arithmetic operations really execute in constant time?". ACM SIGCSE Bulletin. Association for Computing Machinery. 35 (2): 43–44. doi:10.1145/782941.782977. 
  87. ^ a b Fateman, Richard J. (April 11, 2006). "Comments on Factorial Programs" (PDF). University of California, Berkeley. 
  88. ^ a b Winkler, Jürgen F. H.; Kauer, Stefan (March 1997). "Proving assertions is also useful". ACM SIGPLAN Notices. Association for Computing Machinery. 32 (3): 38–41. doi:10.1145/251634.251638. 
  89. ^ a b Borwein, Peter B. (1985). "On the complexity of calculating factorials". Journal of Algorithms. 6 (3): 376–380. doi:10.1016/0196-6774(85)90006-9. MR 0800727. 
  90. ^ Harvey, David; van der Hoeven, Joris (2021). "Integer multiplication in time  " (PDF). Annals of Mathematics. Second Series. 193 (2): 563–617. doi:10.4007/annals.2021.193.2.4. MR 4224716. 
  91. ^ Arndt, Jörg (2011). "34.1.1.1: Computation of the factorial". Matters Computational: Ideas, Algorithms, Source Code (PDF). Springer. hlm. 651–652.  See also "34.1.5: Performance", pp. 655–656.
  92. ^ a b Schönhage, Arnold (1994). Fast algorithms: a multitape Turing machine implementation. B.I. Wissenschaftsverlag. hlm. 226. 
  93. ^ Guy 2004. "B43: Alternating sums of factorials". pp. 152–153.
  94. ^ a b Callan, David (2009). "A combinatorial survey of identities for the double factorial". arΧiv:0906.1317 [math.CO]. 
  95. ^ Meserve, B. E. (1948). "Classroom Notes: Double Factorials". The American Mathematical Monthly. 55 (7): 425–426. doi:10.2307/2306136. JSTOR 2306136. MR 1527019. 
  96. ^ Mezey, Paul G. (2009). "Some dimension problems in molecular databases". Journal of Mathematical Chemistry. 45 (1): 1–6. doi:10.1007/s10910-008-9365-8.  .
  97. ^ Dale, M. R. T.; Moon, J. W. (1993). "The permuted analogues of three Catalan sets". Journal of Statistical Planning and Inference. 34 (1): 75–87. doi:10.1016/0378-3758(93)90035-5. MR 1209991. .
  98. ^ Luca, Florian; Marques, Diego (2010). "Perfect powers in the summatory function of the power tower". Journal de Théorie des Nombres de Bordeaux. 22 (3): 703–718. doi:10.5802/jtnb.740. MR 2769339. 
  99. ^ Graham, Knuth & Patashnik 1988, hlm. x, 47–48.
  100. ^ Sagan, Bruce E. (2020). "Theorem 1.2.1". Combinatorics: the Art of Counting. Graduate Studies in Mathematics. 210. Providence, Rhode Island: American Mathematical Society. hlm. 5. ISBN 978-1-4704-6032-7. MR 4249619. 
  101. ^ Hardy, G. H. (1921). "Examples XLV". A Course of Pure Mathematics (edisi ke-3rd). Cambridge University Press. hlm. 215. 
  102. ^ Daley, D. J.; Vere-Jones, D. (1988). "5.2: Factorial moments, cumulants, and generating function relations for discrete distributions". An Introduction to the Theory of Point Processes. Springer Series in Statistics. New York: Springer-Verlag. hlm. 112. ISBN 0-387-96666-8. MR 0950166. 
  103. ^ Sloane, N.J.A. (ed.). "Sequence A002109 (Hyperfactorials: Product_{k = 1..n} k^k)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  104. ^ Kinkelin, H. (1860). "Ueber eine mit der Gammafunction verwandte Transcendente und deren Anwendung auf die Integralrechung" [On a transcendental variation of the gamma function and its application to the integral calculus]. Journal für die reine und angewandte Mathematik (dalam bahasa Jerman). 1860 (57): 122–138. doi:10.1515/crll.1860.57.122. 
  105. ^ Glaisher, J. W. L. (1877). "On the product 11.22.33...nn". Messenger of Mathematics. 7: 43–47. 
  106. ^ Aebi, Christian; Cairns, Grant (2015). "Generalizations of Wilson's theorem for double-, hyper-, sub- and superfactorials". The American Mathematical Monthly. 122 (5): 433–443. doi:10.4169/amer.math.monthly.122.5.433. JSTOR 10.4169/amer.math.monthly.122.5.433. MR 3352802. 
  107. ^ Sloane, N.J.A. (ed.). "Sequence A001013 (Jordan-Polya numbers: products of factorial numbers)". On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  108. ^ Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama caldwell-gallot2
  109. ^ Nelson, Randolph (2020). A Brief Journey in Discrete Mathematics. Cham: Springer. hlm. 127. doi:10.1007/978-3-030-37861-5. ISBN 978-3-030-37861-5. MR 4297795. 
  110. ^ Barnes, E. W. (1900). "The theory of the G-function". The Quarterly Journal of Pure and Applied Mathematics. 31: 264–314. JFM 30.0389.02.