Pengguna:Dedhert.Jr/Uji halaman 21

Dalam kalkulus, diferensial menyatakan perubahan suatu fungsi terhadap perubahan variabel bebas. Diferensial didefinisikan dengandengan menyatakan turunan terhadap , sedangkan menyatakan suatu peubah real tambahan; sehingga merupakan suatu fungsi dari dan ). Karena itu, notasi tersebut berlaku suatu persamaanPada persamaan ini, turunan dinyatakan dengan notasi Leibniz , dan bentuk notasi turunan menyerupai hasil bagi diferensial. Alternatif dari notasi ini juga ditulis sebagai

The precise meaning of the variables and depends on the context of the application and the required level of mathematical rigor. The domain of these variables may take on a particular geometrical significance if the differential is regarded as a particular differential form, or analytical significance if the differential is regarded as a linear approximation to the increment of a function. Traditionally, the variables and are considered to be very small (infinitesimal), and this interpretation is made rigorous in non-standard analysis.

Sejarah dan penggunaan

sunting

Diferensial pertama kali diperkenalkan melalui definisi intuitif atau heuristik oleh Isaac Newton. Gottfried Leibniz kemudian melanjutkan pengembangan konsep tersebut lebih lanjut dengan memandang diferensial   sebagai perubahan dengan bilangan yang sangat kecil (infinitesimal) di nilai fungsi  , yang bersesuaian dengan perubahan infinitesimal   di argumen fungsi  . Oleh karena itu, tingkat perubahan sesaat (instantaneous rate of change)   terhadap  , yang merupakan nilai dari turunan fungsi, ditulis menggunakan pecahan Notasi turunan ini dikenal dengan sebutan notasi Leibniz. Pada notasi tersebut, hasil bagi   bukanlah suatu infinitesimal, melainkan suatu bilangan real.

Penggunaan infinteismal pada notasi tersebut telah dikritik secara luas, seperti Bishop Berkeley dalam pamflet terkenalnya yang berjudul The Analyst. Augustin-Louis Cauchy (1823) mendefinisikan diferensial tanpa membandingkan atomism of Leibniz's infinitesimals.[1][2] Instead, Cauchy, following d'Alembert, inverted the logical order of Leibniz and his successors: the derivative itself became the fundamental object, defined as a limit of difference quotients, and the differentials were then defined in terms of it. That is, one was free to define the differential   by an expression

 

in which   and   are simply new variables taking finite real values,[3] not fixed infinitesimals as they had been for Leibniz.[4]

According to (Boyer 1959, hlm. 12), Cauchy's approach was a significant logical improvement over the infinitesimal approach of Leibniz because, instead of invoking the metaphysical notion of infinitesimals, the quantities   and   could now be manipulated in exactly the same manner as any other real quantities in a meaningful way. Cauchy's overall conceptual approach to differentials remains the standard one in modern analytical treatments,[5] although the final word on rigor, a fully modern notion of the limit, was ultimately due to Karl Weierstrass.[6]

In physical treatments, such as those applied to the theory of thermodynamics, the infinitesimal view still prevails. (Courant & John 1999, hlm. 184) reconcile the physical use of infinitesimal differentials with the mathematical impossibility of them as follows. The differentials represent finite non-zero values that are smaller than the degree of accuracy required for the particular purpose for which they are intended. Thus "physical infinitesimals" need not appeal to a corresponding mathematical infinitesimal in order to have a precise sense.

Following twentieth-century developments in mathematical analysis and differential geometry, it became clear that the notion of the differential of a function could be extended in a variety of ways. In real analysis, it is more desirable to deal directly with the differential as the principal part of the increment of a function. This leads directly to the notion that the differential of a function at a point is a linear functional of an increment  . This approach allows the differential (as a linear map) to be developed for a variety of more sophisticated spaces, ultimately giving rise to such notions as the Fréchet or Gateaux derivative. Likewise, in differential geometry, the differential of a function at a point is a linear function of a tangent vector (an "infinitely small displacement"), which exhibits it as a kind of one-form: the exterior derivative of the function. In non-standard calculus, differentials are regarded as infinitesimals, which can themselves be put on a rigorous footing (see differential (infinitesimal)).

Definition

sunting
 
Diferensial fungsi   di suatu titik  .

Diferensial didefinisikan dalam perlakuan kalkulus diferensial yang modern.[7] Definisi mengatakan bahwa diferensial fungsi   dari suatu peubah real   merupakan fungsi   dari dua peubah variabel bebas   dan  . Ini ditulis sebagai 

Pada definisi di atas, seseorang dapat memandangnya sebagai  , atau sederhananya,  . Jika  , maka diferensial dapat ditulis pula sebagai  . Karena  , maka secara konvensional ditulis sebagai   sehingga berlaku persamaan berikut: 

Gagasan tersebut dapat diterima dengan luas, terutama saat mencari hampiran linear dari suatu fungsi dengan nilai dari pertambahan   yang cukup kecil. Lebih tepatnya, jika   adalah suatu fungsi yang terdiferensialkan di  , maka selisih dari nilai   memenuhi bahwa Catatan bahwa galat   pada hampiran tersebut memenuhi   ketika  . Dengan kata lain, identitas tersebut dihampiri sebagai   dengan galatnya dapat dibuat sekecil mungkin dengan  , yang dilakukan dengan cara memaksa nilai   menjadi kecil, dalam artian,

 

ketika  . Oleh karena demikian, diferensial fungsi dikenal sebagai bagian (linear) utama dalam pertambahan suatu fungsi: diferensial adalah fungsi linear dari pertambahan  , dan walaupun galat   tak linear, galat tersebut cenderung drastis menuju ke nol ketika   menuju ke nol.

Diferensial dalam beberapa variabel

sunting
Operator / Fungsi    
Diferensial 1:   2:  

3:  

Turunan parsial    
Turunan total    

Mengutip dari (Goursat 1904, I, §15), untuk fungsi dari variabel yang berjumlah lebih dari satu,   turunan parsial dari   terhadap salah satu variabel   adalah bagian prinsip (principal part) dari perubahan di  , yang dihasilkan dari perubahan   di suatu variabel tersebut. Oleh karena itu, diferensial parsial   melibatkan turunan parsial dari   terhadap   . Jumlah dari diferensial parsial terhadap semua variabel bebas sama dengan diferensial total   yang merupakan bagian prinsip dari perubahan di   yang dihasilkan dari perubahan di variabel bebas  .

Diferensial parsial dapat dijelaskan lebih rinci lagi. Dalam kalkulus multivariabel, (Courant 1937b) mengutip bahwa jika   adalah fungsi terdiferensialkan, maka berdasarkan definisi keterdiferensialan, pertambahan  dengan suku galat   cenderung menuju ke nol saat pertambahan   sama-sama cenderung menuju ke nol. Oleh karena itu, diferensial total didefinisikan secara cermat sebagai  

Karena, berdasarkan definisi,

 

maka

 

Untuk kasus diferensial parsial dengan satu variabel, maka berlaku identitas aproksimasi berikut   Pada identitas tersebut, galat totalnya dapat dibuat sekecil-kecil mungkin dengan  . Hal tersebut dilakukan dengan membatasi pertambahan menjadi bernilai kecil.

Penerapan diferensial total untuk mengestimasi galat

sunting

In measurement, the total differential is used in estimating the error   of a function   based on the errors   of the parameters  . Assuming that the interval is short enough for the change to be approximately linear:

 

and that all variables are independent, then for all variables,

 

This is because the derivative   with respect to the particular parameter   gives the sensitivity of the function   to a change in  , in particular the error  . As they are assumed to be independent, the analysis describes the worst-case scenario. The absolute values of the component errors are used, because after simple computation, the derivative may have a negative sign. From this principle the error rules of summation, multiplication etc. are derived, e.g.:

Let  ;
 ; evaluating the derivatives
Δf = bΔa + aΔb; dividing by f, which is a × b
Δf/f = Δa/a + Δb/b

That is to say, in multiplication, the total relative error is the sum of the relative errors of the parameters.

To illustrate how this depends on the function considered, consider the case where the function is   instead. Then, it can be computed that the error estimate is

Δf/f = Δa/a + Δb/(b ln b)

with an extra 'ln b' factor not found in the case of a simple product. This additional factor tends to make the error smaller, as ln b is not as large as a bare b.

Diferemsial tingkat tinggi

sunting

Higher-order differentials of a function y = f(x) of a single variable x can be defined via:[8]

 

and, in general,

 

Informally, this motivates Leibniz's notation for higher-order derivatives

 

When the independent variable x itself is permitted to depend on other variables, then the expression becomes more complicated, as it must include also higher order differentials in x itself. Thus, for instance,

 

and so forth.

Similar considerations apply to defining higher order differentials of functions of several variables. For example, if f is a function of two variables x and y, then

 

where   is a binomial coefficient. In more variables, an analogous expression holds, but with an appropriate multinomial expansion rather than binomial expansion.[9]

Higher order differentials in several variables also become more complicated when the independent variables are themselves allowed to depend on other variables. For instance, for a function f of x and y which are allowed to depend on auxiliary variables, one has

 

Because of this notational infelicity, the use of higher order differentials was roundly criticized by Hadamard 1935, who concluded:

Enfin, que signifie ou que représente l'égalité
 
A mon avis, rien du tout.

That is: Finally, what is meant, or represented, by the equality [...]? In my opinion, nothing at all. In spite of this skepticism, higher order differentials did emerge as an important tool in analysis.[10]

In these contexts, the nth order differential of the function f applied to an increment Δx is defined by

 

or an equivalent expression, such as

 

where   is an nth forward difference with increment tΔx.

This definition makes sense as well if f is a function of several variables (for simplicity taken here as a vector argument). Then the nth differential defined in this way is a homogeneous function of degree n in the vector increment Δx. Furthermore, the Taylor series of f at the point x is given by

 

The higher order Gateaux derivative generalizes these considerations to infinite dimensional spaces.

Sifat-sifat

sunting

A number of properties of the differential follow in a straightforward manner from the corresponding properties of the derivative, partial derivative, and total derivative. These include:[11]

  • Linearity: For constants a and b and differentiable functions f and g,
 
 

An operation d with these two properties is known in abstract algebra as a derivation. They imply the Power rule

 

In addition, various forms of the chain rule hold, in increasing level of generality:[12]

  • If y = f(u) is a differentiable function of the variable u and u = g(x) is a differentiable function of x, then
 
 
Heuristically, the chain rule for several variables can itself be understood by dividing through both sides of this equation by the infinitely small quantity dt.
  • More general analogous expressions hold, in which the intermediate variables xi depend on more than one variable.

Perumusan umum

sunting

A consistent notion of differential can be developed for a function f : RnRm between two Euclidean spaces. Let xx ∈ Rn be a pair of Euclidean vectors. The increment in the function f is

 

If there exists an m × n matrix A such that

 

in which the vector ε → 0 as Δx → 0, then f is by definition differentiable at the point x. The matrix A is sometimes known as the Jacobian matrix, and the linear transformation that associates to the increment Δx ∈ Rn the vector AΔx ∈ Rm is, in this general setting, known as the differential df(x) of f at the point x. This is precisely the Fréchet derivative, and the same construction can be made to work for a function between any Banach spaces.

Another fruitful point of view is to define the differential directly as a kind of directional derivative:

 

which is the approach already taken for defining higher order differentials (and is most nearly the definition set forth by Cauchy). If t represents time and x position, then h represents a velocity instead of a displacement as we have heretofore regarded it. This yields yet another refinement of the notion of differential: that it should be a linear function of a kinematic velocity. The set of all velocities through a given point of space is known as the tangent space, and so df gives a linear function on the tangent space: a differential form. With this interpretation, the differential of f is known as the exterior derivative, and has broad application in differential geometry because the notion of velocities and the tangent space makes sense on any differentiable manifold. If, in addition, the output value of f also represents a position (in a Euclidean space), then a dimensional analysis confirms that the output value of df must be a velocity. If one treats the differential in this manner, then it is known as the pushforward since it "pushes" velocities from a source space into velocities in a target space.

Pendekatan lain

sunting

Although the notion of having an infinitesimal increment dx is not well-defined in modern mathematical analysis, a variety of techniques exist for defining the infinitesimal differential so that the differential of a function can be handled in a manner that does not clash with the Leibniz notation. These include:

Contoh dan penerapan

sunting

Differentials may be effectively used in numerical analysis to study the propagation of experimental errors in a calculation, and thus the overall numerical stability of a problem (Courant 1937a). Suppose that the variable x represents the outcome of an experiment and y is the result of a numerical computation applied to x. The question is to what extent errors in the measurement of x influence the outcome of the computation of y. If the x is known to within Δx of its true value, then Taylor's theorem gives the following estimate on the error Δy in the computation of y:

 

where ξ = x + θΔx for some 0 < θ < 1. If Δx is small, then the second order term is negligible, so that Δy is, for practical purposes, well-approximated by dy = f'(xx.

The differential is often useful to rewrite a differential equation

 

in the form

 

in particular when one wants to separate the variables.

Catatan

sunting
  1. ^ For a detailed historical account of the differential, see Boyer 1959, especially page 275 for Cauchy's contribution on the subject. An abbreviated account appears in Kline 1972, Chapter 40.
  2. ^ Cauchy explicitly denied the possibility of actual infinitesimal and infinite quantities (Boyer 1959, hlm. 273–275), and took the radically different point of view that "a variable quantity becomes infinitely small when its numerical value decreases indefinitely in such a way as to converge to zero" (Cauchy 1823, hlm. 12; translation from Boyer 1959, hlm. 273).
  3. ^ Boyer 1959, hlm. 275
  4. ^ Boyer 1959, hlm. 12: "The differentials as thus defined are only new variables, and not fixed infinitesimals..."
  5. ^ Courant 1937a, II, §9: "Here we remark merely in passing that it is possible to use this approximate representation of the increment   by the linear expression   to construct a logically satisfactory definition of a "differential", as was done by Cauchy in particular."
  6. ^ Boyer 1959, hlm. 284
  7. ^ See, for instance, the influential treatises of Courant 1937a, Kline 1977, Goursat 1904, and Hardy 1908. Tertiary sources for this definition include also Tolstov 2001 and Itô 1993, §106.
  8. ^ Cauchy 1823. See also, for instance, Goursat 1904, I, §14.
  9. ^ Goursat 1904, I, §14
  10. ^ In particular to infinite dimensional holomorphy (Hille & Phillips 1974) and numerical analysis via the calculus of finite differences.
  11. ^ Goursat 1904, I, §17
  12. ^ Goursat 1904, I, §§14,16
  13. ^ Eisenbud & Harris 1998.
  14. ^ See Kock 2006 and Moerdijk & Reyes 1991.
  15. ^ See Robinson 1996 and Keisler 1986.

See also

sunting

References

sunting
sunting