Karbohidrat

golongan besar senyawa organik
Revisi sejak 10 Desember 2020 04.16 oleh RianHS (bicara | kontrib) (Monosakarida: Hasil terjemahan dari en:Carbohydrate)

Karbohidrat ('hidrat dari karbon'), hidrat arang, atau sakarida (dari bahasa Yunani σάκχαρον, sákcharon, berarti "gula") adalah biomolekul yang terdiri dari atom karbon (C), hidrogen (H), dan oksigen (O), biasanya dengan perbandingan atom hidrogen–oksigen 2:1 (seperti pada molekul air) dan rumus empiris Cm(H2O)n (dengan m bisa saja sama atau berbeda dengan n). Namun, tidak semua karbohidrat sesuai dengan definisi stoikiometri ini (misalnya asam uronat dan gula deoksi seperti fukosa) dan ada pula yang mengandung nitrogen, fosforus, atau belerang.[1] Selain itu, tidak semua bahan kimia yang sesuai dengan definisi ini secara otomatis diklasifikasikan sebagai karbohidrat (misalnya formaldehida). Secara biokimia, karbohidrat adalah polihidroksil-aldehida atau polihidroksil-keton, atau senyawa yang menghasilkan senyawa-senyawa ini bila dihidrolisis.[1] Karbohidrat mengandung gugus fungsional karbonil (sebagai aldehida atau keton) dan banyak gugus hidroksil.

Butir-butir pati, salah satu jenis karbohidrat cadangan makanan pada tumbuhan, dilihat dengan mikroskop cahaya.

Karbohidrat merupakan senyawa organik yang paling melimpah di Bumi. Karbohidrat memiliki berbagai fungsi dalam tubuh makhluk hidup, terutama sebagai bahan bakar (misalnya glukosa), cadangan makanan (misalnya pati pada tumbuhan dan glikogen pada hewan), dan materi pembangun (misalnya selulosa pada tumbuhan, kitin pada hewan dan jamur).[2] Pada proses fotosintesis, tumbuhan hijau mengubah karbon dioksida menjadi karbohidrat.[3] Karbohidrat dibagi menjadi dua yaitu karbohidrat sederhana (gula, roti, permen, dan gula pasir) dan karbohidrat kompleks (gandum utuh dan makanan yang mengandung serat seperti buah-buahan).[4][5]

Bentuk molekul karbohidrat paling sederhana terdiri dari satu molekul gula sederhana yang disebut monosakarida, misalnya glukosa, galaktosa, dan fruktosa.[6] Banyak karbohidrat merupakan polimer yang tersusun dari molekul gula yang terangkai menjadi rantai yang panjang serta dapat pula bercabang-cabang, disebut polisakarida, misalnya pati, kitin, dan selulosa. Selain monosakarida dan polisakarida, terdapat pula disakarida (sukrosa terbuat dari rangkaian dua monosakarida) dan oligosakarida (rangkaian beberapa monosakarida).[7]

Terminologi

Dalam literatur ilmiah, istilah "karbohidrat" memiliki banyak sinonim, seperti "gula" (dalam arti luas), "sakarida", "osa",[8] "glusida",[9] "hidrat karbon", atau "senyawa polihidroksi dengan aldehida atau keton". Beberapa istilah ini, khususnya "karbohidrat" dan "gula", juga digunakan dengan arti lain.

Dalam ilmu pangan dan dalam banyak konteks informal, istilah "karbohidrat" sering kali berarti makanan yang kaya akan karbohidrat kompleks berupa pati (seperti sereal, roti, dan pasta) atau karbohidrat sederhana, seperti gula (terdapat dalam permen, selai, dan makanan penutup). Sering kali dalam daftar informasi nutrisi, seperti Basis Data Nutrisi Nasional USDA, istilah "karbohidrat" digunakan untuk semua hal selain air, protein, lemak, abu, dan etanol.[10] Terkadang pula termasuk senyawa kimia seperti asam asetat atau asam laktat, yang biasanya tidak dianggap sebagai karbohidrat. Dalam label nutrisi, karbohidrat juga termasuk serat makanan yang memang merupakan karbohidrat tetapi tidak menyumbang banyak energi makanan (kilokalori), meskipun sering dimasukkan dalam penghitungan total energi makanan seolah-olah serat ini adalah gula. Dalam arti sempit, "gula" diterapkan untuk karbohidrat manis dan larut, yang banyak di antaranya digunakan dalam makanan.

Struktur

Sebelumnya, nama "karbohidrat" digunakan dalam kimia untuk senyawa apa pun dengan rumus Cm(H2O)n. Menurut definisi ini, beberapa ahli kimia menganggap formaldehida (CH2O) sebagai karbohidrat paling sederhana,[11] sementara ahli yang lain mengklaim sebutan karbohidrat paling sederhana untuk glikolaldehida.[12] Saat ini, istilah karbohidrat umumnya dipahami dalam pengertian biokimia, dengan mengecualikan senyawa yang hanya memiliki satu atau dua karbon dan turut mencakup banyak karbohidrat biologis yang menyimpang dari rumus ini. Meskipun rumus di atas tampaknya telah meliputi karbohidrat yang umum dikenal, karbohidrat yang berlimpah dan ada di mana-mana sering kali menyimpang dari rumus tersebut. Misalnya, karbohidrat bisa mengandung gugus kimia seperti N- asetil (misalnya kitin), sulfat (misalnya glikosaminoglikan), asam karboksilat (misalnya asam sialat), dan modifikasi deoksi (misalnya fukosa dan asam sialat).

Sakarida alami umumnya tersusun dari karbohidrat sederhana yang disebut monosakarida dengan rumus umum (CH2O)n dengan angka n adalah tiga atau lebih. Monosakarida umumnya memiliki struktur H–(CHOH)x(C=O)–(CHOH)y–H, yaitu aldehida atau keton dengan tambahan banyak gugus hidroksil, biasanya satu pada setiap atom karbon yang bukan bagian dari gugus fungsional aldehida atau keton. Contoh monosakarida adalah glukosa, fruktosa, dan gliseraldehida. Namun, beberapa zat biologis yang digolongkan "monosakarida" tidak sesuai dengan rumus ini (misalnya asam uronat dan gula deoksi seperti fukosa) dan ada banyak bahan kimia yang sesuai dengan rumus ini tetapi tidak dianggap sebagai monosakarida (misalnya formaldehida CH2O dan inositol (CH2O)6).[13]

Bentuk rantai terbuka dari monosakarida sering berdampingan dengan bentuk cincin tertutup, berupa gugus karbonil aldehida/keton (C=O) dan gugus hidroksil (–OH) yang bereaksi membentuk hemiasetal dengan jembatan C–O–C baru.

Sejumlah monosakarida dapat saling dihubungkan bersama-sama menjadi molekul yang disebut polisakarida (atau oligosakarida) dengan berbagai cara. Banyak karbohidrat mengandung satu unit (atau lebih) monosakarida termodifikasi yang yang salah satu gugusnya (atau lebih) telah diganti atau dihilangkan. Misalnya deoksiribosa, suatu komponen DNA, adalah versi modifikasi dari ribosa; kitin terdiri dari unit N-asetil glukosamin yang berulang, suatu bentuk glukosa yang mengandung nitrogen.

Klasifikasi

Karbohidrat dapat diklasifikasikan menurut derajat polimerisasinya, dan awalnya dapat dibagi menjadi tiga kelompok utama, yaitu gula, oligosakarida, dan polisakarida.[14]

Kelas (DP) * Subkelompok Komponen
Gula (1–2) Monosakarida Glukosa, galaktosa, fruktosa, xilosa
Disakarida Sukrosa, laktosa, maltosa, isomaltulosa, trehalosa
Poliol Sorbitol, manitol
Oligosakarida (3–9) Malto-oligosakarida Maltodekstrin
Oligosakarida lainnya Rafinosa, stakiosa, frukto-oligosakarida
Polisakarida (>9) Pati Amilosa, amilopektin, pati termodifikasi
Polisakarida nonpati Glikogen, selulosa, hemiselulosa, pektin, hidrokoloid
* DP = Derajat polimerisasi

Monosakarida

 
D-glukosa adalah aldoheksosa dengan rumus (C·H2O)6 . Atom-atom berwarna merah merupakan gugus aldehida dan atom-atom biru menunjukkan pusat asimetris yang terjauh dari aldehida; karena -OH ini berada di sebelah kanan proyeksi Fischer, molekul ini adalah gula D.

Monosakarida merupakan karbohidrat paling sederhana karena molekulnya hanya terdiri atas beberapa atom karbon dan tidak dapat diuraikan dengan cara hidrolisis menjadi karbohidrat yang lebih kecil. Secara kimiawi, monosakarida merupakan aldosa atau ketosa denngan dua gugus hidroksil atau lebih. Rumus kimia dari monosakarida yang tidak termodifikasi adalah (C•H2O)n, yang secara harfiah adalah "karbon hidrat". Monosakarida merupakan molekul bahan bakar penting serta bahan penyusun asam nukleat. Monosakarida terkecil, dengan n=3, adalah dihidroksiaseton serta D- dan L-gliseraldehida.

Klasifikasi monosakarida

Monosakarida diklasifikasikan menurut tiga karakteristik: penempatan gugus karbonilnya, jumlah atom karbon yang dikandungnya, dan sifat kiral yang dimilikinya. Jika gugus karbonilnya berupa aldehida, monosakarida tersebut digolongkan sebagai aldosa; jika gugus karbonilnya berupa keton, monosakarida tersebut digolongkan sebagai ketosa. Monosakarida dengan tiga atom karbon disebut triosa, yang memiliki empat atom karbon disebut tetrosa, lima disebut pentosa, enam disebut heksosa, dan seterusnya.[15] Kedua sistem klasifikasi ini sering digabungkan. Misalnya, glukosa merupakan aldoheksosa (aldehida enam karbon), ribosa merupakan aldopentosa (aldehida lima karbon), dan fruktosa merupakan ketoheksosa (keton enam karbon).

Setiap atom karbon membawa gugus hidroksil (–OH) dan bersifat asimetris, dengan pengecualian karbon pertama dan terakhir, yang menjadikannya pusat stereo dengan dua kemungkinan konfigurasi (R atau S). Karena asimetri ini, mungkin ada sejumlah isomer untuk rumus monosakarida tertentu. Dengan aturan Le Bel-van't Hoff, aldoheksosa D-glukosa, misalnya, memiliki rumus (C·H2O)6, dengan empat dari enam atom karbonnya bersifat stereogenik, yang menjadikan D-glukosa salah satu dari 24=16 kemungkinan stereoisomer. Dalam kasus gliseraldehida (sebuah aldotriosa), ada sepasang stereoisomer yang mungkin, yaitu enansiomer dan epimer. Molekul 1, 3-dihidroksiaseton, yaitu ketosa yang sesuai dengan gliseraldehida aldosa, adalah molekul simetris tanpa pusat stereo. Penetapan D atau L dibuat sesuai dengan orientasi karbon asimetris terjauh dari gugus karbonil: dalam proyeksi Fischer standar, jika gugus hidroksil ada di sebelah kanan, molekulnya disebut gula D, jika tidak, ia disebut gula L. Awalan "D-" dan "L-" tidak boleh disamakan dengan "d-" atau "l-", yang menunjukkan arah gula dalam memutari bidang cahaya terpolarisasi. Penggunaan "d-" dan "l-" tidak lagi dipakai dalam kimia karbohidrat.[16]

Isomerisme rantai

 
Glukosa bisa ada dalam bentuk rantai lurus dan bentuk cincin.

Gugus aldehida atau keton dari monosakarida rantai lurus akan bereaksi secara reversibel dengan gugus hidroksil pada atom karbon yang berbeda untuk membentuk hemiasetal atau hemiketal sehingga membentuk cincin heterosiklik dengan jembatan oksigen di antara dua atom karbon. Cincin dengan lima dan enam atom masing-masing disebut bentuk furanosa dan piranosa, dan berada dalam kesetimbangan dengan bentuk rantai lurus.[17]

Selama konversi dari bentuk rantai lurus ke bentuk siklik, atom karbon yang mengandung oksigen karbonil (disebut karbon anomerik) menjadi pusat stereogenik dengan dua kemungkinan konfigurasi: atom oksigen dapat mengambil posisi di atas atau di bawah cincin sehingga pasangan stereoisomer yang mungkin dihasilkan disebut anomer. Pada anomer α, substituen –OH pada karbon anomerik terletak pada sisi berlawanan (trans) dari cincin pada cabang samping CH2OH. Bentuk alternatifnya, yaitu ketika substituen CH2OH dan hidroksil anomerik berada pada sisi yang sama (cis) dari bidang cincin, disebut anomer β .

Penggunaan dalam organisme hidup

Monosakarida merupakan sumber bahan bakar utama dalam metabolisme, yang digunakan baik sebagai sumber energi (glukosa merupakan sumber alami yang paling penting) dan dalam biosintesis. Ketika monosakarida tidak segera dibutuhkan oleh banyak sel, mereka diubah menjadi bentuk yang lebih hemat ruang, biasanya berupa polisakarida. Pada banyak hewan, termasuk manusia, bentuk penyimpanan ini adalah glikogen, yang banyak ditemukan pada sel hati dan otot. Pada tumbuhan, pati digunakan untuk tujuan yang sama. Karbohidrat yang paling melimpah, selulosa, merupakan komponen struktural dinding sel tumbuhan dan berbagai bentuk alga. Ribosa merupakan komponen RNA, sedangkan deoksiribosa merupakan salah satu komponen DNA. Liksosea adalah komponen liksoflavin yang ditemukan di jantung manusia.[18] Ribulosa dan xilulosa ditemukan dalam jalur pentosa fosfat. Galaktosa, salah satu komponen laktosa gula susu, ditemukan di galaktolipid di membran sel tumbuhan dan di glikoprotein di banyak jaringan. Manosa ditemukan dalam metabolisme manusia, terutama dalam glikosilasi protein tertentu. Fruktosa, atau gula buah, ditemukan di banyak tumbuhan dan manusia, dimetabolisme di hati, diserap langsung ke usus selama pencernaan, dan ditemukan di air mani. Trehalosa, gula utama serangga, dengan cepat dihidrolisis menjadi dua molekul glukosa untuk mendukung penerbangan serangga tersebut.

Disakarida dan oligosakarida

Disakarida merupakan karbohidrat yang terbentuk dari dua molekul monosakarida yang berikatan melalui gugus -OH dengan melepaskan molekul air. Contoh dari disakarida adalah sukrosa, laktosa, dan maltosa.[19] Oligosakarida adalah polimer derajat polimerisasi 2 sampai 10 dan biasanya bersifat larut dalam air. Oligosakarida adalah jenis gula yang tidak bisa sepenuhnya dicerna usus halus. Hal tersebut menyebabkan jenis gula ini langsung menuju ke usus besar dan diproses oleh bakteri[20]

Oligosakarida yang terdiri dari 2 molekul disebut disakarida, dan bila terdiri dari 3 molekul disebut triosa. Sukrosa (sakarosa atau gula tebu) terdiri dari molekul glukosa dan fruktosa, maltosa terdiri dari 2 molekul glukosa, dan laktosa terdiri dari molekul glukosa dan galaktosa. Polisakarida merupakan polimer molekul-molekul monosakarida yang dapat berantai lurus atau bercabang dan dapat dihidrolisis dengan enzim-enzim yang spesifik kerjanya.

Polisakarida

Polisakarida merupakan karbohidrat yang terbentuk dari banyak sakarida sebagai monomernya. Rumus umum polisakarida yaitu C6(H10O5)n. Contoh polisakarida adalah selulosa, glikogen, dan amilum. Polisakarida banyak ditemukan pada jenis-jenis makanan seperti kentang, nasi dan gandum.[21]

Peran biologis

Peran dalam biosfer

Fotosintesis menyediakan makanan bagi hampir seluruh kehidupan di bumi, baik secara langsung atau tidak langsung.[22] Organisme autotrof seperti tumbuhan hijau, bakteri, dan alga mampu melakukan fotosintesis sendiri. [23] Organisme tersebut memanfaatkan hasil fotosintesis secara langsung. Sementara itu, hampir semua organisme heterotrof, termasuk manusia, benar-benar bergantung pada organisme autotrof untuk mendapatkan makanan.[24] Hal itu dikarenakan organisme heterotrof tidak memiliki klorofil[25] contohnya makhluk hidup herbivora, karnivora, dan omnivora. [26]

Pada proses fotosintesis, karbon dioksida diubah menjadi karbohidrat yang kemudian dapat digunakan untuk mensintesis materi organik lainnya. Karbohidrat yang dihasilkan oleh fotosintesis ialah gula berkarbon tiga yang dinamai gliseraldehida 3-fosfat.menurut rozison (2009) Senyawa ini merupakan bahan dasar senyawa-senyawa lain yang digunakan langsung oleh organisme autotrof, misalnya glukosa, selulosa, dan amilum.

Peran sebagai bahan bakar dan nutrisi

 
Kentang merupakan salah satu bahan makanan yang mengandung banyak karbohidrat.

Karbohidrat menyediakan kebutuhan dasar yang diperlukan tubuh makhluk hidup. Monosakarida, khususnya glukosa, merupakan nutrien utama sel. Misalnya, pada vertebrata, glukosa mengalir dalam aliran darah sehingga tersedia bagi seluruh sel tubuh. Sel-sel tubuh tersebut menyerap glukosa dan mengambil tenaga yang tersimpan di dalam molekul tersebut pada proses respirasi seluler untuk menjalankan sel-sel tubuh. Selain itu, kerangka karbon monosakarida juga berfungsi sebagai bahan baku untuk sintesis jenis molekul organik kecil lainnya, termasuk asam amino dan asam lemak.[2]

Sebagai nutrisi untuk manusia, 1 gram karbohidrat memiliki nilai energi 4 Kalori.[27] Dalam menu makanan orang Asia Tenggara termasuk Indonesia, umumnya kandungan karbohidrat cukup tinggi, yaitu antara 70–80%. Bahan makanan sumber karbohidrat ini misalnya padi-padian atau serealia (gandum dan beras), umbi-umbian (kentang, singkong, ubi jalar), dan gula.[28]

Namun, daya cerna tubuh manusia terhadap karbohidrat bermacam-macam bergantung pada sumbernya, yaitu bervariasi antara 90%–98%. Serat menurunkan daya cerna karbohidrat menjadi 85%.[29] Manusia tidak dapat mencerna selulosa sehingga serat selulosa yang dikonsumsi manusia hanya lewat melalui saluran pencernaan dan keluar bersama feses. Serat-serat selulosa mengikis dinding saluran pencernaan dan merangsangnya mengeluarkan lendir yang membantu makanan melewati saluran pencernaan dengan lancar sehingga selulosa disebut sebagai bagian penting dalam menu makanan yang sehat. Contoh makanan yang sangat kaya akan serat selulosa ialah buah-buahan segar, sayur-sayuran, dan biji-bijian.[30]

Selain sebagai sumber energi, karbohidrat juga berfungsi untuk menjaga keseimbangan asam basa di dalam tubuh,[31] berperan penting dalam proses metabolisme dalam tubuh,[31] dan pembentuk struktur sel dengan mengikat protein dan lemak.

Peran sebagai cadangan energi

Beberapa jenis polisakarida berfungsi sebagai materi simpanan atau cadangan, yang nantinya akan dihidrolisis untuk menyediakan gula bagi sel ketika diperlukan. Pati merupakan suatu polisakarida simpanan pada tumbuhan. Tumbuhan menumpuk pati sebagai granul atau butiran di dalam organel plastid, termasuk kloroplas. Dengan mensintesis pati, tumbuhan dapat menimbun kelebihan glukosa. Glukosa merupakan bahan bakar sel yang utama, sehingga pati merupakan energi cadangan.[32]

Sementara itu, hewan menyimpan polisakarida yang disebut glikogen. Manusia dan vertebrata lainnya menyimpan glikogen terutama dalam sel hati dan otot. Penguraian glikogen pada sel-sel ini akan melepaskan glukosa ketika kebutuhan gula meningkat. Namun, glikogen tidak dapat diandalkan sebagai sumber energi hewan untuk jangka waktu lama. Glikogen simpanan akan terkuras habis hanya dalam waktu sehari kecuali kalau dipulihkan kembali dengan mengonsumsi makanan.[32]

Peran sebagai materi pembangun

Organisme membangun materi-materi kuat dari polisakarida struktural. Misalnya, selulosa ialah komponen utama dinding sel tumbuhan. Selulosa bersifat seperti serabut, liat, tidak larut di dalam air, dan ditemukan terutama pada tangkai, batang, dahan, dan semua bagian berkayu dari jaringan tumbuhan.[33] Kayu terutama terbuat dari selulosa dan polisakarida lain, misalnya hemiselulosa dan pektin. Sementara itu, kapas terbuat hampir seluruhnya dari selulosa.

Polisakarida struktural penting lainnya ialah kitin, karbohidrat yang menyusun kerangka luar (eksoskeleton) arthropoda (serangga, laba-laba, crustacea, dan hewan-hewan lain sejenis). Kitin murni mirip seperti kulit, tetapi akan mengeras ketika dilapisi kalsium karbonat. Kitin juga ditemukan pada dinding sel berbagai jenis fungi.[30]

Sementara itu, dinding sel bakteri terbuat dari struktur gabungan karbohidrat polisakarida dengan peptida, disebut peptidoglikan. Dinding sel ini membentuk suatu kulit kaku dan berpori membungkus sel yang memberi perlindungan fisik bagi membran sel yang lunak dan sitoplasma di dalam sel.[34]

Karbohidrat struktural lainnya yang juga merupakan molekul gabungan karbohidrat dengan molekul lain ialah proteoglikan, glikoprotein, dan glikolipid. Proteoglikan maupun glikoprotein terdiri atas karbohidrat dan protein, tetapi proteoglikan terdiri terutama atas karbohidrat, sedangkan glikoprotein terdiri terutama atas protein. Proteoglikan ditemukan misalnya pada perekat antarsel pada jaringan, tulang rawan, dan cairan sinovial yang melicinkan sendi otot. Sementara itu, glikoprotein dan glikolipid (gabungan karbohidrat dan lipid) banyak ditemukan pada permukaan sel hewan.[35] Karbohidrat pada glikoprotein umumnya berupa oligosakarida dan dapat berfungsi sebagai penanda sel. Misalnya, empat golongan darah manusia pada sistem ABO (A, B, AB, dan O) mencerminkan keragaman oligosakarida pada permukaan sel darah merah.[36]

Referensi

  1. ^ a b Lehninger, A.L. (1997). Dasar-dasar Biokimia (edisi ke-Jilid 1, diterjemahkan oleh M. Thenawidjaja). Jakarta: Erlangga. hlm. hlm. 313. 
  2. ^ a b Campbell, N.A. (2002). Biologi (Didigitalisasi oleh Google Penelusuran Buku) (edisi ke-Edisi ke-5, Jilid 1, diterjemahkan oleh R. Lestari dkk.). Jakarta: Erlangga. hlm. hlm. 65–70. ISBN 9789796884681. Diakses tanggal 2009-01-30. 
  3. ^ Media, Kompas Cyber. "Manfaat Proses Fotosintesis bagi Makhluk Hidup Lain Halaman all". KOMPAS.com. Diakses tanggal 2020-09-26. 
  4. ^ Liputan6.com (2020-04-08). "12 Manfaat Karbohidrat bagi Tubuh, Perhatikan Jumlah Konsumsinya". liputan6.com. Diakses tanggal 2020-09-26. 
  5. ^ "Karbohidrat: Jenis dan Fungsinya bagi Tubuh - DokterSehat". Informasi Kesehatan dan Tips Kesehatan - DokterSehat. 2020-05-09. Diakses tanggal 2020-09-26. 
  6. ^ "Sama-Sama Jenis Gula, Apa Bedanya Sukrosa, Glukosa dan Fruktosa?". Hello Sehat. 2018-08-14. Diakses tanggal 2020-09-26. 
  7. ^ Media, Kompas Cyber. "Sama-Sama Gula, Apa Bedanya Sukrosa, Glukosa, Fruktosa? Halaman all". KOMPAS.com. Diakses tanggal 2020-09-26. 
  8. ^ Avenas P (2012). "Etymology of main polysaccharide names" (PDF). Dalam Navard P. The European Polysaccharide Network of Excellence (EPNOE). Wien: Springer-Verlag. 
  9. ^ Fearon WF (1949). Introduction to Biochemistry (edisi ke-2nd). London: Heinemann. ISBN 9781483225395. 
  10. ^ USDA National Nutrient Database, 2015, p. 13
  11. ^ Coulter, John Merle; Barnes, Charler Reid; Cowles, Henry Chandler (1930). A Textbook of Botany for Colleges and Universities. ISBN 9781113909954. 
  12. ^ Burtis, Carl A.; Ashwood, Edward R.; Tietz, Norbert W. (2000). Tietz fundamentals of clinical chemistry. ISBN 9780721686349. 
  13. ^ Matthews CE, Van Holde KE, Ahern KG (1999). Biochemistry (edisi ke-3rd). Benjamin Cummings. ISBN 978-0-8053-3066-3. [halaman dibutuhkan]
  14. ^ "Chapter 1 – The role of carbohydrates in nutrition". Carbohydrates in human nutrition. FAO Food and Nutrition Paper – 66. Food and Agriculture Organization of the United Nations. 
  15. ^ Campbell, Neil A.; Williamson, Brad; Heyden, Robin J. (2006). Biology: Exploring Life. Boston, Massachusetts: Pearson Prentice Hall. ISBN 978-0-13-250882-7. 
  16. ^ Pigman, Ward; Horton, D. (1972). "Chapter 1: Stereochemistry of the Monosaccharides". Dalam Pigman and Horton. The Carbohydrates: Chemistry and Biochemistry Vol 1A (edisi ke-2nd). San Diego: Academic Press. hlm. 1–67. ISBN 9780323138338. 
  17. ^ Pigman, Ward; Anet, E.F.L.J. (1972). "Chapter 4: Mutarotations and Actions of Acids and Bases". Dalam Pigman and Horton. The Carbohydrates: Chemistry and Biochemistry Vol 1A (edisi ke-2nd). San Diego: Academic Press. hlm. 165–94. ISBN 9780323138338. 
  18. ^ Rujukan kosong (bantuan) 
  19. ^ "Tak Semua Rasa Manis Berasal dari Satu Jenis Gula Yang Sama • Hello Sehat". Hello Sehat. 2016-10-25. Diakses tanggal 2020-09-26. 
  20. ^ "Cara Hindari Perut Kembung Selama Berpuasa". Diakses tanggal 2020-09-26. 
  21. ^ "Karbohidrat: Jenis dan Fungsinya bagi Tubuh - DokterSehat". Informasi Kesehatan dan Tips Kesehatan - DokterSehat. 2020-05-09. Diakses tanggal 2020-09-26. 
  22. ^ Liputan6.com (2019-01-09). "Proses Fotosintesis pada Tumbuhan dan Fenomena Unik yang Menyertainya". liputan6.com. Diakses tanggal 2020-09-26. 
  23. ^ Media, Kompas Cyber. "Memahami Proses dan Reaksi Kimia Fotosintesis Halaman all". KOMPAS.com. Diakses tanggal 2020-09-26. 
  24. ^ Campbell et al. (2002), hlm. 181-182. Diakses pada 1 Februari 2009.
  25. ^ Liputan6.com (2019-03-15). "Ciri-Ciri Jamur dan Penjelasannya, Tak Punya Klorofil dan Bersifat Parasit". liputan6.com. Diakses tanggal 2020-09-26. 
  26. ^ "Makhluk hidup autotrof & heterotrof, apa ya bedanya?". merdeka.com (dalam bahasa Inggris). Diakses tanggal 2020-09-26. 
  27. ^ Suhardjo (1992). Prinsip-prinsip Ilmu Gizi (Didigitalisasi oleh Google Penelusuran Buku). Yogyakarta: Kanisius. hlm. hlm. 5. ISBN 9794137650, 9789794137659 Periksa nilai: invalid character |isbn= (bantuan). Diakses tanggal 2009-02-02. 
  28. ^ Suhardjo & Kusharto (1992), hlm. 19–20. Diakses pada 2 Februari 2009.
  29. ^ Suhardjo & Kusharto (1992), hlm. 101. Diakses pada 2 Februari 2009.
  30. ^ a b Campbell et al. (2002), hlm. 69. Diakses pada 2 Februari 2009.
  31. ^ a b "KARBOHIDRAT DALAM TUBUH: Manfaat dan Dampak Defisiensi Karbohidrat". ResearchGate. Juni 2020. Diakses tanggal 15 September 2020. 
  32. ^ a b Campbell et al. (2002) hlm. 67–68. Diakses pada 5 Februari 2009
  33. ^ Lehninger (1997), hlm. 326.
  34. ^ Lehninger (1997), hlm. 329–330.
  35. ^ Lehninger (1997), hlm. 331–335.
  36. ^ Campbell et al. (2002), hlm. 146. Diakses pada 9 Februari 2009

Pranala luar