Pengguna:Klasüo/bak pasir
Ini adalah bak pasir pribadi Klasüo. Bak pasir ini khusus milik Klasüo. Kegunaannya adalah sebagai halaman uji coba penyuntingan dan dapat ditemukan di halaman pribadi. Perlu diingat, ini bukanlah artikel. Untuk mencobanya, klik di sini. Jika ingin menggunakan Bak pasir Wikipedia, klik di sini
|
Arsip |
Dalam matematika, sebuah akar ke-n dari bilangan x adalah bilangan r yang jika dipangkatkan n, menghasilkan x:
dimana n adalah bilangan bulat positif, kadang-kadang disebut derajat dari akar. Akar derajat 2 disebut akar kuadrat dan akar derajat 3, sebuah akar pangkat tiga. Akar tingkat yang lebih tinggi dirujuk dengan menggunakan bilangan urut, seperti pada akar keempat, akar kedua puluh, dll. Perhitungan akar ke-n adalah ekstraksi akar.
Misalnya, 3 adalah akar kuadrat dari 9, karena 32 = 9, dan 3 juga merupakan akar kuadrat dari 9, karena (−3)2 = 9.
Setiap bilangan bukan nol yang dianggap sebagai bilangan kompleks memiliki n akar ke-n yang berbeda, termasuk real (paling banyak dua). Akar ke-n dari 0 adalah nol untuk semua bilangan bulat positif n, setelah 0n = 0. Khususnya, jika n genap dan x adalah bilangan real positif, satunya adalah negatif, dan yang lainnya (ketika n > 2) bilangan kompleks non-real; jika n genap dan x adalah bilangan real negatif, tidak ada satupun akar ke-n yang merupakan real. Jika n ganjil dan x real, satu akar n adalah real dan bertanda sama sebagai x, sedangkan akar lainnya (n – 1) bukanlah real. Akhirnya, jika x bukanlah real, maka tidak ada akar ke-n yang merupakan real.
Akar bilangan real biasanya ditulis menggunakan simbol radikal atau radix , dengan menunjukkan akar kuadrat positif dari x jika x adalah positif; untuk akar tinggi, menunjukkan akar ke-n yang sebenarnya jika n adalah ganjil, dan akar ke-n positif jika n adalah genap dan x adalah positif. Dalam kasus lain, simbol tidak umum digunakan sebagai ambigu. Dalam ekspresi , bilangan bulat n disebut indeks dan x disebut radikan .
Ketika kompleks akar ke-n dipertimbangkan, seringkali berguna untuk memilih salah satu akar, yang disebut akar utama, sebagai nilai utama. Pilihan umum adalah memilih akar ke-n utama dari x sebagai akar ke-n, dengan bagian real terbesar, dan, jika ada dua (untuk x real dan negatif), yang memiliki bagian imajiner positif. Ini membuat akar ke-n sebagai fungsi real dan positif untuk x real dan positif, dan adalah kontinu diseluruh bidang kompleks, kecuali untuk nilai x real dan negatif.
Kesulitan dengan pilihan ini adalah, untuk bilangan real negatif dan indeks ganjil, akar ke-n utama yang bukan asli. Misalnya, memiliki tiga akar pangkat tiga, , dan Akar pangkat tiga sebenarnya adalah dan akar pangkat tiga utama adalah
Akar yang tidak terselesaikan, terutama yang menggunakan simbol radikal, kadang-kadang disebut sebagai surd[1] atau "radikal".[2] Setiap ekspresi yang mengandung radikal, apakah itu akar kuadrat, akar pangkat tiga, atau akar yang lebih tinggi, disebut ekspresi radikal, dan jika tidak mengandung fungsi transendental atau bilangan transendental disebut ekspresi aljabar.
Akar juga didefinisikan sebagai kasus khusus dari eksponensial, dimana eksponen adalah pecahan:
Operasi aritmetika | ||||||||||||||||||||||||||||||||||||||||||
|
Akar digunakan untuk menentukan radius konvergensi dari deret pangkat dengan uji akar. Akar ke-n dari 1 disebut akar satuan dan memainkan peran mendasar dalam berbagai bidang matematika, seperti teori bilangan, teori persamaan, dan transformasi Fourier.
Sejarah
Istilah kuno untuk operasi pengambilan akar n adalah radikasi.[3]
Definisi dan notasi
Sebuah akar ke-n dari bilangan x, dimana n adalah bilangan bulat positif, salah satu dari n bilangan real atau kompleks r memiliki kuasa n adalah x:
Setiap bilangan riil positif x memiliki akar ke-n positif tunggal, yang disebut akar ke-n utama, yang ditulis sebagai . Untuk n sama dengan 2 ini disebut akar kuadrat utama dan n yang dihilangkan. Akar ke-n juga dapat direpresentasikan menggunakan eksponensial sebagai x1/n.
Untuk nilai genap n, bilangan positif juga memiliki akar ke-n negatif, sedangkan bilangan negatif tidak memiliki akar ke-n real. Untuk nilai ganjil n, setiap bilangan negatif x memiliki akar ke-n negatif real. Misalnya, 2 memiliki akar ke-5 real, tetapi -2 tidak memiliki akar ke-6 real.
Setiap bilangan bukan nol x, real atau kompleks, memiliki n akar ke-n bilangan kompleks yang berbeda. Dalam kasus x real, hitungan ini mencakup akar ke-n real. Satu-satunya akar kompleks dari 0 adalah 0.
Akar ke-n dari hampir semua bilangan (semua bilangan bulat kecuali pangkat ke-n, dan semua rasional kecuali hasil bagi dua pangkat ke-n) adalah irasional. Misalnya,
Semua akar bilangan bulat ke-n adalah bilangan aljabar.
Istilah surd ditelusuri kembali ke al-Khwārizmī (c. 825), yang menyebut bilangan rasional dan irasional sebagai terdengar dan tidak terdengar, masing-masing. Hal ini kemudian menyebabkan kata Arab "أصم" (asamm, yang berarti "tuli" atau "bisu") untuk bilangan irasional diterjemahkan ke dalam bahasa Latin sebagai "surdus" (artinya "tuli" atau "bisu"). Gerard dari Cremona (c. 1150), Fibonacci (1202), dan kemudian Robert Recorde (1551) semuanya menggunakan istilah tersebut untuk merujuk pada akar irasional tak-terselesaikan, yaitu, ekspresi bentuk dimana dan adalah bilangan bulat dan seluruh ekspresi menunjukkan bilangan irasional.[4] Bilangan irasional kuadrat yaitu bilangan irasional dalam bentuk juga dikenal sebagai "surd kuadrat".
Akar kuadrat
Akar kuadrat dari bilangan x adalah bilangan r yang ketika kuadrat sebagai x:
Setiap bilangan real positif memiliki dua akar kuadrat, satu positif dan satu negatif. Misalnya, dua akar kuadrat dari 25 adalah 5 dan -5. Akar kuadrat positif juga dikenal sebagai akar kuadrat utama, dan dilambangkan dengan tanda radikal:
Karena kuadrat dari setiap bilangan real adalah nonnegatif, bilangan negatif tidak memiliki akar kuadrat real. Namun, untuk setiap bilangan real negatif terdapat dua akar kuadrat imajiner. Misalnya, akar kuadrat dari −25 adalah 5i dan 5i, dimana i menyatakan bilangan yang kuadratnya −1.
Akar pangkat tiga
Sebuah akar pangkat tiga dari bilangan x adalah bilangan r yang kubusnya adalah x:
Setiap bilangan real x memiliki tepat satu akar pangkat tiga, ditulis . Misalnya,
- dan
Setiap bilangan real memiliki dua akar pangkat tiga kompleks tambahan.
Dasar-dasar matematika
Deskripsi berikut dari fungsi akar kuadrat sebagai teoretis mengacu pada tubuh yang diatur bilangan real ℝ, sehingga sampai batas tertentu pada matematika didatik. Istilah akar yang umum untuk mencakup penjelasan tersebut, dibahas dalam artikel adjungsi.[5]
Koneksi dengan potensi
Akar kuadrat dengan eksponen akar dan eksponen dengan eksponen saling meniadakan. Menurut definisi akar atas, untuk semua bilangan real dan untuk semua bilangan asli :
Akar kuadrat dengan eksponen akar melakukan seperti eksponen dengan eksponen . Menurut kaidah perhitungan untuk kuasa:
Oleh karena itu akar kuadrat dengan eksponen akar n juga diartikan sebagai eksponen dengan eksponen 1/n:[6]
Akar unik dari bilangan positif
Meskipun pertanyaan yang disebutkan diawal memiliki dua solusi dengan tanda yang berbeda untuk eksponen akar genap dan radikan positif, yang merupakan notasi dengan tanda akar pada dasarnya untuk solusi positif.[7][8] Misalnya, persamaan memiliki dua solusi dan . Namun, istilah memiliki nilai +2 dan yang bukan nilai −2. Oleh karena itu, eksponen tersebut digunakan dalam akar genap
Akar bilangan negatif
Definisi akar dari bilangan negatif bukan seragam. Maka berlaku, yaitu
dan adalah satu-satunya bilangan real kuasa ketiga . Secara umum, bilangan negatif menghasilkan kuasa ganjil dari bilangan negatif.
Berkenaan dengan akar ganjil dari bilangan negatif, berikut ini diambil:
- Akar dari bilangan negatif umumnya tidak didefinisikan. Misalnya, tidak didefinisikan. Solusi dari persamaan ditulis sebagai .
- Akar dari bilangan negatif didefinisikan jika eksponen akar adalah bilangan ganjil (3, 5, 7, ...). Untuk bilangan ganjil adalah
- .
- Definisi ini tidak sesuai dengan beberapa sifat akar yang digunakan untuk radikan positif. Contohnya adalah
- Definisi ini juga tidak melakukan persamaan , karena logaritma (secara alamiah) dari bilangan negatif yang tidak didefinisikan (maka, tetaplah negatif).
Akar kuasa genap dari bilangan negatif tidak berupa bilangan real karena kuasa bilangan real bukanlah negatif. Tidak ada bilangan real , jadi tidak dapat menemukan akar yang terletak pada bilangan real. Dibutuhkan akan akar bilangan negatif disebabkan karena pengenalan bilangan kompleks;[9] namun, dengan konsep akar pada area bilangan kompleks, terdapat kesulitan tertentu dengan identifikasi yang jelas dari salah satu akar, lihat dibawah.
Akar irasional dari bilangan bulat
Jika adalah bilangan bulat tidak negatif dan adalah bilangan bulat positif, jadi adalah bilangan bulat atau bilangan irasional. Hal ini dibuktikan dengan menerapkan keunikan faktorisasi prima:
Jika , maka , yaitu bilangan bulat. Jika tidak, faktorisasi prima unik kecuali urutan faktor dengan urutan bilangan prima yang berbeda dan bilangan bulat positif . Apakah semua untuk habis dibagi , jadi adalah bilangan bulat.
Untuk menunjukkannya adalah: Apakah ada setidaknya satu dengan , sehingga tidak habis dibagi , maka adalah irasional. Bukti irasionalitas tak langsung, juga menyangkal asumsi berlawanan seperti dalam bukti irasional akar 2 dalam Euklides, yang pada dasarnya adalah kasus khusus dari pembuktian ini.
Misalkan adalah rasional. Kemudian Anda menulis bilangan tersebut sebagai pecahan dari dua bilangan asli dan :
- .
Dengan menaikkan persamaan ke kuasa
dan mengikuti
- .
Faktorisasi prima muncul pada atau , lebih digunakan daripada atau , setidaknya dalam perkalian yang dibagi dengan , dimana kemunculan 0 tentu saja diizinkan. Pada disesuaikan dengan prasyarat pada perkalian yang tidak habis dibagi . Jadi itu tidaklah muncul pada sisi kiri persamaan yang digunakan dalam perkalian yang habis dibagi , tetapi pada bagian sebelah kanannya, dan mendapatkan kontradiksi dengan keunikan faktorisasi prima. Oleh karena itu, adalah irasional.
Hukum Akar
Aturan perhitungan untuk akar dihasilkan dari aturan untuk kuasa.
Hukum matematika berikut ini berlaku untuk bilangan positif dan dan :
- Darab:
- Pembagian/Hasil bagi:
- Iterasi:
- Definisi eksponen pecahan:
- Definisi eksponen negatif:
- Dengan radikan yang sama, berikut ini berlaku:
Dengan bilangan negatif dan , hukum aritmetika ini hanya dapat digunakan, jika dan adalah bilangan ganjil. Dalam kasus bilangan kompleks, ia harus dihindari sepenuhnya, atau ekuivalen hanya berlaku dengan pilihan saham sekunder yang sesuai. Dengan kata lain: dalam contoh, akar apa pun (misalnya, nilai utama) dipilih pada sisi kiri, untuk sisi kanan terdapat bilangan sekunder yang sesuai yang memenuhi persamaan—sisi kiri dan kanan berbeda satu akar satuan.
Barisan
Limit barisan berikut ini berlaku:
- untuk
- Ini mengikuti dari pertidaksamaan , yang ditunjukkan dengan bantuan teorema binomial.
- , dimana adalah bilangan asli tetap.
- ,
- seperti dilihat dari representasi eksponensial dari .
Fungsi akar
Fungsi berikut ini berlaku dalam bentuk
- atau
yang disebut juga sebagai fungsi akar. Maka ia adalah fungsi kuasa, yang berlaku .
Identitas dan sifat
Mengekspresikan derajat akar ke-n dalam bentuk eksponen, seperti dalam , mempermudah manipulasi kuasa dan akar. Jika adalah bilangan real non-negatif,
Setiap bilangan non-negatif memiliki tepat satu akar ke-n real non-negatif, jadi kaidah untuk operasi dengan surd yang melibatkan radikan non-negatif dan langsung dalam bilangan real:
Kehalusan dapat terjadi saat mengambil akar ke-n dari negatif atau bilangan kompleks. Misalnya:
- , namun, lebih tepatnya adalah
Karena kaidah hanya berlaku untuk radikan real non-negatif saja, penerapannya mengarah pada ketaksamaan pada langkah pertama diatas.
Bentuk sederhana dari ekspresi radikal
Ekspresi radikal tak bersarang dikatakan dalam bentuk sederhana jika[10]
- Tidak ada faktor radikan yang ditulis sebagai kuasa besar atau sama dengan indeks.
- Tidak ada pecahan di bawah tanda radikal.
- Tidak ada radikal dalam penyebutnya.
Misalnya, untuk menulis ekspresi akar dalam bentuk sederhana, kita melanjutkannya sebagai berikut. Pertama, cari kuadrat sempurna di bawah tanda akar kuadrat dan hapus:
Selanjutnya, ada pecahan di bawah tanda radikal, yang kita ubah sebagai berikut:
Akhirnya, kita menghapus akar dari penyebut sebagai berikut:
Ketika ada penyebut yang melibatkan surd, mungkin menemukan faktor untuk mengalikan pembilang dan penyebut dengan cara menyederhanakan ekspresi.[11][12] Misalnya menggunakan faktorisasi jumlah dua kubus:
Menyederhanakan ekspresi radikal yang melibatkan radikal tersarang bisa sangat sulit. Misalnya bahwa:
Di atas dapat diturunkan melalui:
Misalkan , dengan p dan q berkoprima dan bilangan bulat positif. Maka adalah rasional jika dan hanya jika keduanya dan adalah bilangan bulat, yang berarti bahwa baik p dan q adalah kuasa ke-n dari beberapa bilangan bulat.
Deret tak hingga
Radikal atau akar yang diwakili oleh deret tak hingga:
dengan . Ekspresi ini diturunkan dari deret binomial.
Computing principal roots
Using Newton's method
The nth root of a number A can be computed with Newton's method. Start with an initial guess x0 and then iterate using the recurrence relation
until the desired precision is reached. For example, to find the fifth root of 34, we plug in n = 5, A = 34 and x0 = 2 (initial guess). The first 5 iterations are, approximately:
x0 = 2
x1 = 2.025
x2 = 2.024397817
x3 = 2.024397458
x4 = 2.024397458
The approximation x4 is accurate to 25 decimal places.
Newton's method can be modified to produce various generalized continued fraction for the nth root. For example,
Digit-by-digit calculation of principal roots of decimal (base 10) numbers
Building on the digit-by-digit calculation of a square root, it can be seen that the formula used there, , or , follows a pattern involving Pascal's triangle. For the nth root of a number is defined as the value of element in row of Pascal's Triangle such that , we can rewrite the expression as . For convenience, call the result of this expression . Using this more general expression, any positive principal root can be computed, digit-by-digit, as follows.
Write the original number in decimal form. The numbers are written similar to the long division algorithm, and, as in long division, the root will be written on the line above. Now separate the digits into groups of digits equating to the root being taken, starting from the decimal point and going both left and right. The decimal point of the root will be above the decimal point of the radicand. One digit of the root will appear above each group of digits of the original number.
Beginning with the left-most group of digits, do the following procedure for each group:
- Starting on the left, bring down the most significant (leftmost) group of digits not yet used (if all the digits have been used, write "0" the number of times required to make a group) and write them to the right of the remainder from the previous step (on the first step, there will be no remainder). In other words, multiply the remainder by and add the digits from the next group. This will be the current value c.
- Find p and x, as follows:
- Let be the part of the root found so far, ignoring any decimal point. (For the first step, ).
- Determine the greatest digit such that .
- Place the digit as the next digit of the root, i.e., above the group of digits you just brought down. Thus the next p will be the old p times 10 plus x.
- Subtract from to form a new remainder.
- If the remainder is zero and there are no more digits to bring down, then the algorithm has terminated. Otherwise go back to step 1 for another iteration.
Examples
Find the square root of 152.2756.
1 2. 3 4 / \/ 01 52.27 56
01 100·1·00·12 + 101·2·01·11 ≤ 1 < 100·1·00·22 + 101·2·01·21 x = 1 01 y = 100·1·00·12 + 101·2·01·12 = 1 + 0 = 1 00 52 100·1·10·22 + 101·2·11·21 ≤ 52 < 100·1·10·32 + 101·2·11·31 x = 2 00 44 y = 100·1·10·22 + 101·2·11·21 = 4 + 40 = 44 08 27 100·1·120·32 + 101·2·121·31 ≤ 827 < 100·1·120·42 + 101·2·121·41 x = 3 07 29 y = 100·1·120·32 + 101·2·121·31 = 9 + 720 = 729 98 56 100·1·1230·42 + 101·2·1231·41 ≤ 9856 < 100·1·1230·52 + 101·2·1231·51 x = 4 98 56 y = 100·1·1230·42 + 101·2·1231·41 = 16 + 9840 = 9856 00 00 Algorithm terminates: Answer is 12.34
Find the cube root of 4192 to the nearest hundredth.
1 6. 1 2 4 3 / \/ 004 192.000 000 000
004 100·1·00·13 + 101·3·01·12 + 102·3·02·11 ≤ 4 < 100·1·00·23 + 101·3·01·22 + 102·3·02·21 x = 1 001 y = 100·1·00·13 + 101·3·01·12 + 102·3·02·11 = 1 + 0 + 0 = 1 003 192 100·1·10·63 + 101·3·11·62 + 102·3·12·61 ≤ 3192 < 100·1·10·73 + 101·3·11·72 + 102·3·12·71 x = 6 003 096 y = 100·1·10·63 + 101·3·11·62 + 102·3·12·61 = 216 + 1,080 + 1,800 = 3,096 096 000 100·1·160·13 + 101·3·161·12 + 102·3·162·11 ≤ 96000 < 100·1·160·23 + 101·3·161·22 + 102·3·162·21 x = 1 077 281 y = 100·1·160·13 + 101·3·161·12 + 102·3·162·11 = 1 + 480 + 76,800 = 77,281 018 719 000 100·1·1610·23 + 101·3·1611·22 + 102·3·1612·21 ≤ 18719000 < 100·1·1610·33 + 101·3·1611·32 + 102·3·1612·31 x = 2 015 571 928 y = 100·1·1610·23 + 101·3·1611·22 + 102·3·1612·21 = 8 + 19,320 + 15,552,600 = 15,571,928 003 147 072 000 100·1·16120·43 + 101·3·16121·42 + 102·3·16122·41 ≤ 3147072000 < 100·1·16120·53 + 101·3·16121·52 + 102·3·16122·51 x = 4 The desired precision is achieved: The cube root of 4192 is about 16.12
Logarithmic calculation
The principal nth root of a positive number can be computed using logarithms. Starting from the equation that defines r as an nth root of x, namely with x positive and therefore its principal root r also positive, one takes logarithms of both sides (any base of the logarithm will do) to obtain
The root r is recovered from this by taking the antilog:
(Note: That formula shows b raised to the power of the result of the division, not b multiplied by the result of the division.)
For the case in which x is negative and n is odd, there is one real root r which is also negative. This can be found by first multiplying both sides of the defining equation by −1 to obtain then proceeding as before to find |r|, and using r = −|r|.
Geometric constructibility
The ancient Greek mathematicians knew how to use compass and straightedge to construct a length equal to the square root of a given length, when an auxiliary line of unit length is given. In 1837 Pierre Wantzel proved that an nth root of a given length cannot be constructed if n is not a power of 2.[13]
Complex roots
Die komplexen Zahlen werden definiert durch die Adjunktion der Lösung (Wurzel) der Gleichung zu den reellen Zahlen . Fasst man die komplexen Zahlen als Ebene auf, in der die reellen Zahlen als eine ausgezeichnete Gerade die Ebene in zwei Halbebenen teilt und die positiven Zahlen sich rechts befinden, dann wird die Zahl in die obere und in die untere Halbebene platziert. Gleichzeitig mit dieser Orientierung wird der Nullpunkt durch die Funktion für wachsendes reelles im mathematisch positiven Sinn (also entgegen dem Uhrzeigersinn) umlaufen, so dass ist. Mit dieser Maßgabe lassen sich inhärent mehrdeutige Wurzeln im Komplexen auf eindeutige Real- und Imaginärteile (Hauptwerte) festlegen. Gleichwohl ist bei der Anwendung der Wurzelgesetze die dort erwähnte Sorgfalt zu beachten.
Als die -ten Wurzeln einer komplexen Zahl bezeichnet man die Lösungen der Gleichung
- .
Ist in der Exponentialform dargestellt, so sind die -ten Wurzeln aus genau die komplexen Zahlen
Der Sonderfall wird als -te Kreisteilungsgleichung bezeichnet, die Lösungen als -te Einheitswurzeln. Die Bezeichnung „Kreisteilungsgleichung“ erklärt sich, wenn man ihre Lösungen in der Gaußschen Ebene betrachtet: die -ten Einheitswurzeln teilen den Kreis mit dem Radius und dem Koordinatenursprung als Mittelpunkt in gleiche Teile, sie bilden die Eckpunkte eines in den Kreis einbeschriebenen regulären -Ecks.
Anders als bei reellen Zahlen kann man nicht so einfach eine der Wurzeln als die Wurzel auszeichnen; dort wählt man die einzige nichtnegative Wurzel. Man kann jedoch eine (holomorphe) -te Wurzelfunktion für komplexe Zahlen, die keine nichtpositiven reellen Zahlen sind, über den Hauptzweig des komplexen Logarithmus definieren:
Die so ausgezeichnete Wurzel bezeichnet man auch als Hauptwert, die anderen als Nebenwerte.
Man kann den Logarithmus auch (unstetig) auf die negative reelle Achse fortsetzen, es gilt dann aber mit der so definierten Wurzelfunktion beispielsweise und nicht .[14]
Every complex number other than 0 has n different nth roots.
Square roots
The two square roots of a complex number are always negatives of each other. For example, the square roots of −4 are 2i and −2i, and the square roots of i are
If we express a complex number in polar form, then the square root can be obtained by taking the square root of the radius and halving the angle:
A principal root of a complex number may be chosen in various ways, for example
which introduces a branch cut in the complex plane along the positive real axis with the condition 0 ≤ θ < 2π, or along the negative real axis with −π < θ ≤ π.
Using the first(last) branch cut the principal square root maps to the half plane with non-negative imaginary(real) part. The last branch cut is presupposed in mathematical software like Matlab or Scilab.
Roots of unity
The number 1 has n different nth roots in the complex plane, namely
where
These roots are evenly spaced around the unit circle in the complex plane, at angles which are multiples of . For example, the square roots of unity are 1 and −1, and the fourth roots of unity are 1, , −1, and .
nth roots
Every complex number has n different nth roots in the complex plane. These are
where η is a single nth root, and 1, ω, ω2, ... ωn−1 are the nth roots of unity. For example, the four different fourth roots of 2 are
In polar form, a single nth root may be found by the formula
Here r is the magnitude (the modulus, also called the absolute value) of the number whose root is to be taken; if the number can be written as a+bi then . Also, is the angle formed as one pivots on the origin counterclockwise from the positive horizontal axis to a ray going from the origin to the number; it has the properties that and
Thus finding nth roots in the complex plane can be segmented into two steps. First, the magnitude of all the nth roots is the nth root of the magnitude of the original number. Second, the angle between the positive horizontal axis and a ray from the origin to one of the nth roots is , where is the angle defined in the same way for the number whose root is being taken. Furthermore, all n of the nth roots are at equally spaced angles from each other.
If n is even, a complex number's nth roots, of which there are an even number, come in additive inverse pairs, so that if a number r1 is one of the nth roots then r2 = –r1 is another. This is because raising the latter's coefficient –1 to the nth power for even n yields 1: that is, (–r1)n = (–1)n × r1n = r1n.
As with square roots, the formula above does not define a continuous function over the entire complex plane, but instead has a branch cut at points where θ / n is discontinuous.
Solving polynomials
It was once conjectured that all polynomial equations could be solved algebraically (that is, that all roots of a polynomial could be expressed in terms of a finite number of radicals and elementary operations). However, while this is true for third degree polynomials (cubics) and fourth degree polynomials (quartics), the Abel–Ruffini theorem (1824) shows that this is not true in general when the degree is 5 or greater. For example, the solutions of the equation
cannot be expressed in terms of radicals. (cf. quintic equation)
Proof of irrationality for non-perfect nth power x
Assume that is rational. That is, it can be reduced to a fraction , where a and b are integers without a common factor.
This means that .
Since x is an integer, and must share a common factor if . This means that if , is not in simplest form. Thus b should equal 1.
Since and , .
This means that and thus, . This implies that is an integer. Since x is not a perfect nth power, this is impossible. Thus is irrational.
See also
References
- ^ Bansal, R.K. (2006). New Approach to CBSE Mathematics IX. Laxmi Publications. hlm. 25. ISBN 978-81-318-0013-3.
- ^ Silver, Howard A. (1986). Algebra and trigonometry . Englewood Cliffs, NJ: Prentice-Hall. ISBN 978-0-13-021270-2.
- ^ "Arti Radikasi". www.lektur.id.com.
- ^ "Earliest Known Uses of Some of the Words of Mathematics". Mathematics Pages by Jeff Miller. Diakses tanggal 2008-11-30.
- ^ Untuk kesulitan dengan keunikan hukum lihat akar bilangan kompleks.
- ^ Kesalahan pengutipan: Tag
<ref>
tidak sah; tidak ditemukan teks untuk ref bernamaMathematik_2008/1
- ^ DIN 1302:1999 Allgemeine mathematische Zeichen und Begriffe
- ^ EN ISO 80000-2:2020 Größen und Einheiten – Bagian 2: Mathematik
- ^ T. Arens, F. Hettlich et al.: Mathematik. 2008, S. 122.
- ^ McKeague, Charles P. (2011). Elementary algebra. hlm. 470. ISBN 978-0-8400-6421-9.
- ^ B.F. Caviness, R.J. Fateman, "Simplification of Radical Expressions", Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation, hal. 329.
- ^ Richard Zippel, "Simplification of Expressions Involving Radicals", Journal of Symbolic Computation 1:189–210 (1985) DOI:10.1016/S0747-7171(85)80014-6.
- ^ Wantzel, M. L. (1837), "Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec la règle et le compas", Journal de Mathématiques Pures et Appliquées, 1 (2): 366–372.
- ^ Dies lässt sich vermeiden mit der Auszeichnung derjenigen Wurzel unter allen, deren Argument modulo den absolut kleinsten Rest liefert. Bei Gleichheit zweier Werte ist dann der in der rechten (positiver Realteil) und der in der oberen Halbebene (positiver Imaginärteil) auszuwählen. Diese Regel ist mit den oben aufgestellten Regeln für reelle Radikanden voll kompatibel. Einige Beispiele:
Obwohl und und ist mit den absoluten Resten des Arguments
weil die mittlere Wurzel bei dem gleichen absoluten Rest einen positiven Realteil hat.
Außerdem bleiben bei dieser Definition die Wurzelgesetze für viele Wurzelexponenten auch bei komplexen Radikanden erhalten, solange für die so ausgewählten Wurzeln die Summen der Reste modulo der Argumentwerte absolut unterhalb bleiben.