Akar
Pada tumbuhan berpembuluh, akar adalah organ tumbuhan yang berperan penting dalam menahan berdirinya tumbuhan dan menyerap air serta nutrisi ke dalam tubuh tumbuhan, yang memungkinkan tumbuhan tumbuh lebih tinggi dan lebih cepat.[1] Akar sering kali terletak di bawah permukaan tanah, tetapi akar juga bisa mengalami modifikasi dan terspesialisasi. Misalnya akar udara atau akar aerial, jenis akar ini biasanya tumbuh di atas tanah atau terutama di atas air.
Fungsi
Akar berperan penting dalam penyerapan air dan nutrisi tumbuhan serta menjadi penopang batang tumbuhan di atas tanah.[2]
Anatomi
Morfologi akar dibagi menjadi empat zona: tudung akar, meristem apikal, zona perpanjangan, dan rambut akar.[3] Tudung akar membantu akar-akar baru menembus tanah. Tudung akar ini terkelupas saat akar masuk lebih dalam menciptakan permukaan berlendir yang menyediakan pelumas. Meristem apikal di belakang penutup akar menghasilkan sel akar baru yang memanjang. Kemudian, rambut akar akan terbentuk, rambut akar inilah yang menyerap air dan nutrisi mineral dari tanah.[4] Akar pertama pada tumbuhan berbiji disebut radicle, yang berkembang dari embrio tumbuhan setelah biji berkecambah.
Saat dibedah, susunan sel di dalam akar adalah rambut akar, epidermis, epiblem, korteks, endodermis , pericycle dan, terakhir, jaringan vaskular di tengah akar untuk mengangkut air yang diserap oleh akar ke bagian lain tumbuhan.[butuh klarifikasi]
Sebagai respons terhadap konsentrasi nutrisi, akar juga mensintesis sitokinin, yang bertindak sebagai sinyal kecepatan pertumbuhan tunas. Akar sering berfungsi sebagai penyimpanan makanan dan nutrisi. Akar dari sebagian besar spesies tumbuhan vaskular bersimbiosis dengan jamur tertentu untuk membentuk mikoriza. Sejumlah besar organisme lain, termasuk bakteri juga sering kali hidup di akar.[5]
Sejarah evolusi
Jejak fosil dari akar—atau lebih tepatnya, lubang yang terisi dari sisa-sisa akar yang membusuk—bisa dirunut dari akhir periode Silurian, sekitar 430 juta tahun yang lalu.[6] Identifikasi akar cenderung sulit, karena cetakan dari fosil akar sangat mirip dengan liang hewan. Fosil akar dapat dibedakan menggunakan berbagai fitur.[7] Perkembangan evolusioner akar kemungkinan besar terjadi dari modifikasi rimpang dangkal (batang horizontal termodifikasi) yang menopang tumbuhan vaskular primitif. Akar primitif ini kemudian mengalami perkembangan dalam bentuk rimpang berserabut (disebut rizoid) yang menopang tumbuhan dan mengalirkan air ke tanaman dari tanah.[8] Rimpang dangkal adalah bentuk primitif dari akar, meskipun tidak memiliki peran fungsional yang sama dengan akar modern. Seiring berjalannya waktu, modifikasi pada struktur rimpang ini terjadi sebagai bagian dari perkembangan evolusi tumbuhan.
Pertumbuhan
Pertumbuhan awal akar merupakan salah satu fungsi dari meristem apikal yang terletak di dekat ujung akar. Sel-sel meristem sedikit banyak terus membelah, menghasilkan lebih banyak meristem, sel-sel tudung akar (dikorbankan untuk melindungi meristem), dan sel-sel akar yang tidak berdiferensiasi. Sel-sel ini kemudian menjadi jaringan primer akar, setelah sebelumnya mengalami pemanjangan, suatu proses yang mendorong ujung akar ke dalam media tumbuhnya. Secara bertahap sel-sel ini berdiferensiasi dan matang menjadi sel-sel khusus jaringan akar.[9]
Kedalaman
Distribusi akar tumbuhan vaskular di dalam tanah bergantung pada bentuk tumbuhan, ketersediaan air dan unsur hara secara spasial dan temporal, serta sifat fisik tanah. Akar terdalam umumnya ditemukan di gurun dan hutan jenis konifera beriklim sedang. Akar tumbuh paling dangkal di daerah tundra, hutan boreal, dan padang rumput beriklim sedang. Akar hidup terdalam yang diamati, setidaknya 60 meter di bawah permukaan tanah, diamati selama penggalian tambang terbuka di Arizona, AS. Beberapa akar bisa tumbuh ke dalam tanah hingga setinggi pohonnya. Mayoritas akar pada sebagian besar tanaman ditemukan relatif dekat dengan permukaan tanah, di mana ketersediaan hara dan aerasi lebih baik untuk pertumbuhan. Kedalaman perakaran mungkin secara fisik dibatasi oleh batuan atau tanah yang padat di bawah permukaan tanah, atau oleh kondisi tanah anaerobik.
Rekor
Spesies | Lokasi | Kedalaman perakaran maksimum (m) | Referensi[10][11] |
---|---|---|---|
Boscia albitrunca | Gurun Kalahari | 68 | Jennings (1974) |
Juniperus monosperma | Dataran tinggi Colorado | 61 | Cannon (1960) |
Eucalyptus sp. | Hutan Australia | 61 | Jennings (1971) |
Acacia erioloba | Gurun Kalahari | 60 | Jennings (1974) |
Prosopis juliflora | Gurun Arizona | 53.3 | Phillips (1963) |
Interaksi tumbuhan
Tumbuhan dapat berinteraksi satu sama lain di lingkungannya melalui sistem perakaran. Penelitian telah menunjukkan bahwa interaksi antar tumbuhan terjadi di antara sistem perakaran melalui media tanah. Para peneliti telah menguji apakah tumbuhan yang tumbuh dalam kondisi lingkungan akan mengubah perilakunya jika tanaman di dekatnya terkena kondisi kekeringan.[12] Karena tumbuhan di dekatnya tidak menunjukkan perubahan pada celah stomata, para peneliti percaya bahwa sinyal kekeringan menyebar melalui akar dan tanah, bukan melalui udara sebagai sinyal kimiawi yang mudah menguap.[13]
Interaksi tanah
Mikrobiota tanah dapat menekan penyakit dan simbion akar yang menguntungkan (jamur mikoriza lebih mudah tumbuh di tanah yang steril). Inokulasi dengan bakteri tanah dapat meningkatkan ekstensi ruas, memicu dan mempercepat pembungaan. Migrasi bakteri di sepanjang akar bervariasi sesuai dengan kondisi alami tanah. Sebagai contoh, penelitian telah menemukan bahwa sistem perakaran biji gandum yang diinokulasi dengan Azotobacter menunjukkan populasi yang lebih tinggi di tanah yang mendukung pertumbuhan Azotobacter. Beberapa penelitian tidak berhasil meningkatkan kadar mikroba tertentu (seperti P. fluorescens) di tanah alami tanpa sterilisasi sebelumnya.[14]
Akar semu
Organ atau jaringan yang secara anatomi tidak dapat dianggap sebagai akar tetapi memiliki fungsi yang serupa dengan akar dinamakan akar semu atau rizoid (Lat. rhizoid). Istilah ini biasanya disematkan pada individu yang bukan termasuk tumbuhan berpembuluh tetapi dapat melekat pada suatu objek tertentu menggunakan alat yang mirip fungsinya dengan akar, yaitu untuk melekat, menjangkar, atau menyerap hara dari tempatnya tumbuh. Alga dan fase gametofit tumbuhan lumut serta tumbuhan paku memiliki rizoid. Beberapa tumbuhan pterofit (Euphyllophyta) juga memiliki rizoid yang merupakan modifikasi daun atau batang. Contohnya adalah Azolla dan Salvinia, serta Lemna.[15]
Pergerakan Air pada Akar[16]
Secara umum air bergerak di dalam jaringan karena adanya perbedaan (gradien) tekanan, baik gradien potensial air, gradien tekanan hidrostatik, maupun karena gradien tekanan uap. Gradien potensial air biasanya terjadi apabila air melewati membran sel seperti dari tanah/media ke dalam sel akar, atau dari sel-sel yang satu ke sel-sel lainnya. Gradien tekanan hidrostatik terjadi manakala air bergerak tanpa melalui membran sel, misalnya di dalam pembuluh xilem, yaitu dari xilem akar ke xilem batang dan daun. Adapun gradien tekanan uap biasa terjadi di stomata daun di mana air berubah dari cairan menjadi uap. Dengan demikian dalam sistem tumbuhan yang utuh ketiga jenis gradien ini terjadi dan saling sambung menyambung. Di dalam sel-sel akar air harus masuk mulai dari sel-sel epidermis akar, melewati korteks akar hingga ke jaringan pembuluh (xilem akar). Gambar penampang melintang akar menunjukkan bahwa dari luar hingga ke dalam, jaringan akar terdiri dari epidemis, korteks, endodermis, dan silinder pusat. Silinder pusat terdiri dari jaringan xilem dan floem dalam posisi yang berselang dengan pusatnya adalah jaringan pengangkut xilem.
Dengan demikian air yang masuk ke dalam akar tumbuhan harus melewati epidermis, korteks dan endodermis akar, sehingga dapat mencapai xilem. Pergerakan air dari tanah ke dalam akar bisa terjadi melalui dua mekanisme, yaitu (1) air masuk melalui ruang-ruang antarsel, atau dikenal dengan jalur apoplas, dan (2) air masuk ke dalam sel epidermis akar, kemudian bergerak dari sel ke sel di dalam jaringan korteks melalui benang-benang plasmodesmata; mekanisme ini dikenal dengan jalur simplas. Kedua mekanisme ini bisa sama-sama terjadi selama masihdalam jaringan korteks akar. Namun ketika sampai pada jaringan endodermis, air dan garam mineral tidak lagi dapat melewati ruang-ruang antarsel (jalur apoplas) karena pada jaringan endodermis terdapat garis kaspari . Garis kaspari atau yang juga disebut pita kaspari (casparian strip) adalah penebalan dinding sel yang mengandung suberin pada endodermis pada posisi radial. Adanya garis kaspari menyebabkan air dan mineral yang masuk melalui jalur apoplas menjadi terputus. Dengan demikian ketika sampai pada jaringan endodermis, air hanya bergerak melalui jalur simplas, yaitu masuk ke dalam sel, dan bukan lagi melalui ruang-ruang antarsel. Adanya jaringan yang bersuberin ini, terutama pada jaringan endodermis akar yang sudah tidak mengalami pertumbuhan (daerah diferensiasi), sedangkan pada jaringan endodermis akar yang masih muda (beberapa mm di dekat ujung akar) belum terbentuk suberin.
Setelah melewati endodermis, air dan mineral akan sampai di jaringan pembuluh xilem akar. Xilem adalah jaringan yang tersusun oleh sel-sel yang mati yang berperan seperti pipa-pipa kapiler yang banyak. Melalui jaringan xilem inilah air akan diangkut ke bagian atas tumbuhan, yaitu ke batang dan daun. Yang menjadi pertanyaan kemudian adalah bagaimana air dapat naik ke atas/puncak pohon yang tinggi. Percobaan-percobaan mengenai hal ini telah banyak dilakukan untuk menguak rahasia naiknya air dari akar ke daun tumbuhan yang tinggi.
Walaupun telah diketahui bahwa air masuk ke dalam sel tumbuhan melalui osmosis, pergerakan air ke dalam sel akar tumbuhan diyakini juga terjadi melalui cara yang lain agar air dapat masuk lebih cepat. Pada beberapa dekade terakhir ini telah diketahui bahwa ada protein saluran (channel protein) yang berfungsi khusus untuk melalukan air ke dalam sel akar. Protein saluran ini dikenal dengan istilah aquaporin. Sesuai dengan namanya protein ini ada pada membran akar dengan membentuk semacam pori/saluran yang khusus untuk lewatnya air. Dengan adanya aquaporin ini memungkinkan air bergerak lebih cepat jika dibandingkan dengan hanya melalui proses osmosis biasa, yaitu melewati dua lapisan lipid membran.
Referensi
- ^ Harley Macdonald & Donovan Stevens (3 September 2019). Biotechnology and Plant Biology. EDTECH. hlm. 141–. ISBN 978-1-83947-180-3.
- ^ "Plant parts=Roots". University of Illinois Extension.
- ^ Yaacov Okon (24 November 1993). Azospirillum/Plant Associations. CRC Press. hlm. 77–. ISBN 978-0-8493-4925-6.
- ^ "Backyard Gardener: Understanding Plant Roots". University of Arizona Cooperative Extension.
- ^ Sheldrake, Merlin (2020). Entangled Life. Bodley Head. hlm. 148. ISBN 978-1847925206.
- ^ Retallack GJ (1986). "The fossil record of soils" (PDF). Dalam Wright VP. Paleosols: their Recognition and Interpretation. Oxford: Blackwell. hlm. 1–57. Diarsipkan dari versi asli (PDF) tanggal 2017-01-07.
- ^ Hillier R, Edwards D, Morrissey LB (2008). "Sedimentological evidence for rooting structures in the Early Devonian Anglo–Welsh Basin (UK), with speculation on their producers". Palaeogeography, Palaeoclimatology, Palaeoecology. 270 (3–4): 366–380. Bibcode:2008PPP...270..366H. doi:10.1016/j.palaeo.2008.01.038.
- ^ Amram Eshel; Tom Beeckman (17 April 2013). Plant Roots: The Hidden Half, Fourth Edition. CRC Press. hlm. 1–. ISBN 978-1-4398-4649-0.
- ^ Russell PJ, Hertz PE, McMillan B (2013). Biology: The Dynamic Science. Cengage Learning. hlm. 750. ISBN 978-1-285-41534-5. Diarsipkan dari versi asli tanggal 2018-01-21. Diakses tanggal 2017-04-24.
- ^ Canadell J, Jackson RB, Ehleringer JB, Mooney HA, Sala OE, Schulze ED (December 1996). "Maximum rooting depth of vegetation types at the global scale". Oecologia. 108 (4): 583–595. Bibcode:1996Oecol.108..583C. doi:10.1007/BF00329030. PMID 28307789.
- ^ Stonea EL, Kaliszb PJ (1 December 1991). "On the maximum extent of tree roots". Forest Ecology and Management. 46 (1–2): 59–102. doi:10.1016/0378-1127(91)90245-Q.
- ^ Chamovitz, Daniel. (2017). What a plant knows : a field guide to the senses. ISBN 9780374537128. OCLC 1041421612.
- ^ Falik O, Mordoch Y, Ben-Natan D, Vanunu M, Goldstein O, Novoplansky A (July 2012). "Plant responsiveness to root-root communication of stress cues". Annals of Botany. 110 (2): 271–80. doi:10.1093/aob/mcs045. PMC 3394639 . PMID 22408186.
- ^ Bowen GD, Rovira AD (1976). "Microbial Colonization of Plant Roots". Annu. Rev. Phytopathol. 14: 121–144. doi:10.1146/annurev.py.14.090176.001005.
- ^ "Akar - Pengertian, Fungsi, Struktur, Sifat, Anatomi, Jenis, Pertumbuhan & Cara Kerja". RimbaKita.com. 2022-01-12. Diakses tanggal 2022-05-25.
- ^ Hamim (2008). BMP PEBI4313 Fisiologi Tumbuhan (PDF). Tangerang Selatan: Universitas Terbuka. hlm. p.1.24–26. ISBN 9790110294.
Bacaan lanjutan
- Baldocchi DD, Xu L (October 2007). "What limits evaporation from Mediterranean oak woodlands–The supply of moisture in the soil, physiological control by plants or the demand by the atmosphere?". Advances in Water Resources. 30 (10): 2113–22. Bibcode:2007AdWR...30.2113B. doi:10.1016/j.advwatres.2006.06.013.
- Brundrett, M. C. (2002). "Coevolution of roots and mycorrhizas of land plants". New Phytologist. 154 (2): 275–304. doi:10.1046/j.1469-8137.2002.00397.x . PMID 33873429 Periksa nilai
|pmid=
(bantuan). - Clark, Lynn (2004). "Primary Root Structure and Development – lecture notes" (PDF). Diarsipkan dari versi asli (PDF) tanggal 3 January 2006.
- Coutts MP (1987). "Developmental processes in tree root systems". Canadian Journal of Forest Research. 17 (8): 761–767. doi:10.1139/x87-122.
- Raven JA, Edwards D (2001). "Roots: evolutionary origins and biogeochemical significance". Journal of Experimental Botany. 52 (Suppl 1): 381–401. doi:10.1093/jxb/52.suppl_1.381. PMID 11326045.
- Schenk HJ, Jackson RB (2002). "The global biogeography of roots". Ecological Monographs. 72 (3): 311–328. doi:10.2307/3100092. JSTOR 3100092.
- Sutton RF, Tinus RW (1983). "Root and root system terminology". Forest Science Monograph. 24: 137.
- Phillips WS (1963). "Depth of roots in soil". Ecology. 44 (2): 424. doi:10.2307/1932198. JSTOR 1932198.
- Caldwell MM, Dawson TE, Richards JH (1998). "Hydraulic lift: consequences of water efflux from the roots of plants". Oecologia. 113 (2): 151–161. Bibcode:1998Oecol.113..151C. doi:10.1007/s004420050363. PMID 28308192.