Bilangan besar

(Dialihkan dari Angka besar)
Untuk melihat daftar bilangan besar lihat: daftar bilangan besar, nama-nama bilangan besar.

Bilangan besar adalah bilangan yang secara signifikan lebih besar dari bilangan biasa yang digunakan dalam kehidupan sehari-hari. misal, perhitungan dasar atau transaksi keuangan. Bilangan besar sering muncul didalam matematika, kosmologi, astronomi, kriptografi dan mekanika statistika. Bilangan-bilangan tersebut biasanya berupa bilangan bulat positif besar, atau lebih umum lagi, bilangan riil positif besar, tetapi bisa juga berupa bilangan lain dalam konteks lain pula. Googologi adalah studi tentang nomenklatur dan sifat-sifat bilangan besar.[1][2][butuh sumber yang lebih baik]

Notasi ilmiah untuk bilangan besar dan kecil

sunting

Notasi ilmiah diciptakan untuk menangani berbagai macam nilai yang terjadi dalam studi ilmiah. 1,0 × 109, misalnya, berarti satu miliar, atau angka 1 yang diikuti oleh sembilan angka nol: 1.000.000.000. Kebalikannya, 1,0 × 10-9, berarti sepersatu miliar, atau 0,000 000 001. Menulis 109 alih-alih menulis angka satu diikuti sembilan angka nol akan menghemat tenaga pembaca, dan menghindari kesalahan saat membaca angka nol yang banyak yang menyebabkan disinformasi. Selain notasi ilmiah (pangkat 10), contoh-contoh berikut ini mencakup nomenklatur sistematis (skala pendek) untuk bilangan besar.

Bilangan besar dalam dunia sehari-hari

sunting

Contoh bilangan besar yang menggambarkan objek dunia nyata sehari-hari meliputi:

  • Jumlah sel dalam tubuh manusia diperkirakan mencapai 3,72 × 1013, atau 37,2 triliun[3]
  • Jumlah bit pada hard disk komputer pada tahun 2024, biasanya mencapai sekitar 1013, 1-2 TB, atau 10 triliun
  • Jumlah koneksi sel saraf di otak manusia diperkirakan mencapai 1014, atau 100 triliun
  • Konstanta Avogadro adalah jumlah “entitas elementer” biasanya atom atau molekul dalam satu mol; jumlah atom dalam 12 gram karbon-12 - sekitar 6,022 × 1023, atau 602,2 sekstiliun.
  • Jumlah total pasangan basa DNA dalam seluruh biomassa di Bumi, sebagai perkiraan keanekaragaman hayati global, diperkirakan mencapai (5,3 ± 3,6) × 1037, atau 53 ± 36 sekoniliun[4][5]
  • Massa Bumi terdiri dari sekitar 4 × 1051, atau 4 seksdesiliun, nukleon
  • Perkiraan jumlah atom di alam semesta teramati 1080, atau 100 quinvigintiliun
  • Batas bawah pada kompleksitas pohon permainan catur, juga dikenal sebagai “bilangan Shannon” diperkirakan mencapai sekitar 10120, atau 1 novemtrigintiliun[6]

Bilangan besar dalam astronomi

sunting

Angka-angka besar lainnya terkait panjang dan waktu ditemukan dalam astronomi dan kosmologi. Sebagai contoh, model Big Bang saat ini menunjukkan bahwa alam semesta berusia 13,8 miliar tahun (4,355 × 1017 detik), dan alam semesta yang dapat diamati memiliki luas 93 miliar tahun cahaya (8,8 × 1026 meter), dan mengandung sekitar 5 × 1022 bintang, yang tersusun dalam sekitar 125 miliar (1,25 × 1011) galaksi, berdasarkan pengamatan Teleskop Luar Angkasa Hubble. Ada sekitar 1080 atom di alam semesta yang dapat diamati, menurut perkiraan kasar.

Menurut Don Page, fisikawan di University of Alberta, Kanada, waktu terbatas terpanjang yang sejauh ini telah dihitung secara eksplisit oleh fisikawan mana pun adalah:

 

Contoh yang lain:

  •   (10,000,000,000), disebut "sepuluh miliar" dalam bahasa Indonesia (skala panjang) atau "sepuluh biliun" (skala pendek).
  • Seksdesiliar =   dikenal juga sebagai duotrigintiliun.
  • Googol =  
  • Sentiliun =   dalam skala pendek, atau   dalam skala panjang.
  • Bilangan Smith terbesar yang diketahui = (101031−1) × (104594 + 3×102.297 + 1)1476 ×103.913.210
  • Bilangan prima Mersenne terbesar yang diketahui =   (pada tanggal 3 Januari 2018)
  • Googolplex =  
  • Bilangan Skewes: bilangan pertama sekitar  , bilangan kedua:  
  • Bilangan Graham, (g64) bilangan yang terlalu besar untuk dapat direpresentasikan oleh perpangkatan berulang. Namun, mungkin bisa direpresentasi oleh Notasi anak panah Knuth.

Standar sistem penulisan

sunting

Cara standar untuk menulis bilangan besar memungkinkan untuk dengan mudah diurutkan sesuai dengan seberapa besar bilangan itu, sekaligus kita bisa mendapatkan gambaran yang baik tentang seberapa besar suatu bilangan dibandingkan dengan bilangan yang lain.

Untuk membandingkan bilangan dalam notasi ilmiah, misalnya 5×104 dan 2×105, bandingkan eksponennya terlebih dahulu, dalam hal ini eksponen 5 > 4, jadi 2×105 > 5×104. Jika eksponennya sama, maka yang dibaningkan adalah mantissa atau koefisiennya, jadi 5×104 > 2×104 karena 5 > 2.

Tetrasi desimal memberikan urutan   pangkat dari bilangan 10, dimana   menyatakan pangkat fungsional dari fungsi   (fungsi ini juga memiliki akhiran “-plex” seperti pada googolplex, lihat keluarga googol).

Ini adalah angka yang sangat bulat, masing-masing mewakili urutan besarnya dalam pengertian umum. Cara kasar untuk menentukan seberapa besar sebuah angka adalah dengan menentukan di antara dua angka mana dalam urutan ini.

Lebih tepatnya, angka di antaranya dapat dinyatakan dalam bentuk   dengan pangkat 10, dan angka di bagian atas, dapat dilakukan dengan notasi ilmiah, misalnya  , sebuah angka diantara   dan  . (harap diingat bahwa   jika nilai a lebih dari 1 dan kurang dari 10 atau  . (lihat juga notasi anak panah knuth untuk penjelasan lebih rinci)

Dengan demikian bilangan googolplex dapat ditulis seperti ini  

atau contoh lain seperti:

  bilangan yang nilainya diantara  

Jadi, tingkat besaran dari sebuah bilangan (pada skala yang lebih besar dari biasanya) dapat ditentukan oleh jumlah kali (n) kita harus mengambil logaritma basis 10 ( )sampai mendapatkan bilangan yang berada antara 1 dan 10. Dengan demikian, bilangan tersebut berada di antara  . Sebagaimana dijelaskan, deskripsi yang lebih tepat dari sebuah bilangan juga harus menentukan nilai bilangan tersebut di antara 1 dan 10, atau bilangan sebelumnya (dengan mengambil logaritma satu kali lebih sedikit) antara 10 dan 1010, atau berikutnya, antara 0 dan 1.

harap diingat bahwa  

Jika sebuah angka x terlalu besar untuk sebuah representasi

  menara pangkat dapat dibuat satu tingkat lebih tinggi, menggantikan x dengan  , atau mencari x dari representasi menara yang lebih rendah dari log10 bilangan bulat. Jika menara pangkat berisi satu atau lebih bilangan yang berbeda dari 10, kedua pendekatan ini akan menghasilkan hasil yang berbeda, sesuai dengan fakta bahwa memperpanjang menara pangkat dengan 10 di bagian bawah tidak sama dengan memperpanjangnya dengan 10 di bagian atas (tetapi, tentu saja, pernyataan yang sama berlaku jika seluruh menara pangkat terdiri dari salinan bilangan yang sama, yang berbeda dari 10).

Jika tinggi menara besar, berbagai representasi untuk angka besar dapat diterapkan pada ketinggian itu sendiri. Jika ketinggiannya hanya diberikan secara kira-kira, memberikan nilai di bagian atas tidak masuk akal, sehingga notasi panah ganda (misalnya:   ) dapat digunakan. Jika nilai setelah tanda panah ganda merupakan angka yang sangat besar, maka cara di atas dapat diterapkan secara rekursif pada nilai tersebut.

Contoh:

  berada diantara  .

  yang nilainya berada diantara   dan  .

Contoh penggunaan

sunting

Berikut adalah contoh penggunaan notasi anak panah knuth, diawali dengan bilangan kecil yang masih masuk akal untuk direpresentasikan dengan desimal biasa, disusul dengan bilangan besar yang masih bisa direpresentasikan dengan notasi ilmiah lalu dilanjutkan dengan bilangan yang lebih besar lagi, yang dapat ditulis dengan notasi  .

Bilangan yang mampu direpresentasikan dengan desimal biasa:

sunting
  • 22 = 4
  • 222 = 2 ↑↑ 3 = 16
  • 33 = 27
  • 44 = 256
  • 55 = 3.125
  • 66 = 46.656
  •  
  • 77 = 823.543
  • 106 = 1.000.000 = 1 Juta
  • 88 = 16.777.216
  • 99 = 387.420.489
  • 109 = 1.000.000.000 = 1 Miliar
  • 1010 = 10.000.000.000
  • 1012 = 1.000.000.000.000 = 1 Triliun
  •  
  • 1015 = 1.000.000.000.000.000 = 1 Juta miliar = 1 kuadriliun
  • 1018 = 1.000.000.000.000.000.000 = 1 Miliar miliar = 1 kuintiliun

Bilangan yang dapat direpresentasikan dengan notasi ilmiah:

sunting
  • Perkiraan jumlah atom dalam alam semesta teramati = 1080 = 100.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000
  • googol = 10100 = 10.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000 .000.000.000.000
  • 444 = 4 ↑↑ 3 = 2512 ≈ 1,34 × 10154 ≈ (10 ↑)2 2,2
  • Perkiraan jumlah satuan planck yang dibutuhkan untuk mengsi alam semesta teramati = 8,5 × 10184
  • 555 = 5 ↑↑ 3 = 53.125 ≈ 1,91 × 102.184 ≈ (10 ↑)2 3,3
  • 666 = 6 ↑↑ 3 ≈ 2,66 × 1036.305 ≈ (10 ↑)2 4,6
  • 777 = 7 ↑↑ 3 ≈ 3,76 × 10695.974 ≈ (10 ↑)2 5,8
  •  
  • 888 = 8 ↑↑ 3 ≈ 6,01 × 1015.151.335 ≈ (10 ↑)2 7,2
  •  , bilangan prima mersenne terbesar per 2021
  • 999 = 9 ↑↑ 3 ≈ 4.28 × 10369.693.099 ≈ (10 ↑)2 8.6
  •  
  •  

Bilangan yang bisa direpresentasikan dengan notasi  :

sunting
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  • 2 ↑↑↑↑ 3 = 2 ↑↑↑ 4 = 2 ↑↑ 65.536 ≈ (10 ↑)65.533 4.3, bilangan diantara 10 ↑↑ 65.533 dan 10 ↑↑ 65.534

Angka yang lebih besar

sunting
  •  
  •  
  •  
  •  
  •  
  •  
  •   = ( 10 → 5 → 3 )
  •   = ( 10 → 6 → 3 )
  •   = ( 10 → 7 → 3 )
  •   = ( 10 → 8 → 3 )
  •   = ( 10 → 9 → 3 )
  •   = ( 10 → 2 → 4 ) = ( 10 → 10 → 3 )
  • Pola pertama pada bilangan graham, g1 = 3 ↑↑↑↑ 3 = 3 ↑↑↑ (3 ↑↑↑ 3) ≈ 3 ↑↑↑ (10 ↑↑ 7.6 × 1012) ≈ 10 ↑↑↑ (10 ↑↑ 7.6 × 1012), nilai yang berada diantara (10 ↑↑↑)2 2 dan (10 ↑↑↑)2 3
  •   = (10 → 3 → 4)
  •   = ( 4 → 4 → 4 )  
  •   = ( 10 → 4 → 4 )
  •   = ( 10 → 5 → 4 )
  •   = ( 10 → 6 → 4 )
  •   = ( 10 → 7 → 4 )
  •   = ( 10 → 8 → 4 )
  •   = ( 10 → 9 → 4 )
  •   = ( 10 → 2 → 5 ) = ( 10 → 10 → 4 )
  • ( 2 → 3 → 2 → 2 ) = ( 2 → 3 → 8 )
  • ( 3 → 2 → 2 → 2 ) = ( 3 → 2 → 9 ) = ( 3 → 3 → 8 )
  • ( 10 → 10 → 10 ) = ( 10 → 2 → 11 )
  • ( 10 → 2 → 2 → 2 ) = ( 10 → 2 → 100 )
  • ( 10 → 10 → 2 → 2 ) = ( 10 → 2 →   ) =  
  • Pola kedua pada bilangan graham, g2 = 3 ↑g1 3 > 10 ↑g1 – 1 10.
  • ( 10 → 10 → 3 → 2 ) = (10 → 10 → (10 → 10 →  ) ) =  
  • g3 = (3 → 3 → g2) > (10 → 10 → g2 – 1) > (10 → 10 → 3 → 2)
  • g4 = (3 → 3 → g3) > (10 → 10 → g3 – 1) > (10 → 10 → 4 → 2)
  • ...
  • g9 = (3 → 3 → g8) yang berada diantara (10 → 10 → 9 → 2) dan (10 → 10 → 10 → 2)
  • ( 10 → 10 → 10 → 2 )
  • g10 = (3 → 3 → g9) yang berada diantara (10 → 10 → 10 → 2) dan (10 → 10 → 11 → 2)
  • ...
  • g63 = (3 → 3 → g62) yang berada diantara (10 → 10 → 63 → 2) dan (10 → 10 → 64 → 2)
  • ( 10 → 10 → 64 → 2 )
  • Bilangan Graham, g64
  • ( 10 → 10 → 65 → 2 )
  • ( 10 → 10 → 10 → 3 )
  • ( 10 → 10 → 10 → 4 )
  • ( 10 → 10 → 10 → 10 )
  • ( 10 → 10 → 10 → 10 → 10 )
  • ( 10 → 10 → 10 → 10 → 10 → 10 )
  • ...
  •   (Dengan angka 10 sebanyak   kali)

Catatan dan referensi

sunting
  1. ^ "One Million Things - A Visual Encyclopedia". MediaFire (dalam bahasa Inggris). Diakses tanggal 2024-08-15. 
  2. ^ Nowlan, Robert A. (2017-05-13). Masters of Mathematics: The Problems They Solved, Why These Are Important, and What You Should Know about Them (dalam bahasa Inggris). Springer. ISBN 978-94-6300-893-8. 
  3. ^ Bianconi, Eva; Piovesan, Allison; Facchin, Federica; Beraudi, Alina; Casadei, Raffaella; Frabetti, Flavia; Vitale, Lorenza; Pelleri, Maria Chiara; Tassani, Simone (Nov–Dec 2013). "An estimation of the number of cells in the human body". Annals of Human Biology. 40 (6): 463–471. doi:10.3109/03014460.2013.807878 . hdl:11585/152451. ISSN 1464-5033. PMID 23829164. 
  4. ^ Landenmark HK, Forgan DH, Cockell CS (June 2015). "An Estimate of the Total DNA in the Biosphere". PLOS Biology. 13 (6): e1002168. doi:10.1371/journal.pbio.1002168 . PMC 4466264 . PMID 26066900. 
  5. ^ Nuwer, Rachel (18 July 2015). "Counting All the DNA on Earth". The New York Times. New York. ISSN 0362-4331. Diakses tanggal 2015-07-18. 
  6. ^ Shannon, Claude (March 1950). "XXII. Programming a Computer for Playing Chess" (PDF). Philosophical Magazine. Series 7. 41 (314). Diarsipkan dari versi asli (PDF) tanggal 2010-07-06. Diakses tanggal 2019-01-25.