Irisan dari dua himpunan yang dinyatakan dengan diagram Venn

Dalam matematika, himpunan (disebut juga kumpulan, kelompok, gugus, atau set) dapat dibayangkan sebagai kumpulan objek yang memiliki sifat yang dapat didefinisikan dengan jelas, atau lebih jelasnya adalah segala koleksi benda-benda tertentu yang dianggap sebagai satu kesatuan.[1] Konsep himpunan seperti ini pertama kali dikemukakan oleh seorang matematikawan Jerman, Georg Cantor, pada akhir abad ke-19. Cantor mendefinisikan himpunan sebagai "Hasil usaha penghimpunan beberapa benda yang memiliki suatu ciri pembeda tertentu, menjadi suatu kesatuan".[2]

Teori himpunan dapat dianggap sebagai dasar yang membangun hampir semua aspek dari matematika dan merupakan sumber semua matematika diturunkan.[3]

Menyatakan dan menuliskan himpunan

Objek dalam suatu himpunan disebut anggota. Notasi   digunakan untuk menyatakan keanggotaan himpunan. Misalnya pernyataan "   anggota   " dapat ditulis sebagai  . Ingkaran pernyataan itu (  bukan anggota  ) dapat ditulis sebagai  . Nama himpunan lazim ditulis menggunakan huruf besar, misalnya  ,   atau  , sementara anggota himpunan ditulis menggunakan huruf kecil ( ,  ,  ).

Himpunan dapat dinyatakan dan dituliskan secara baku[4] dengan dua cara berikut, yaitu:

  • Cara pendaftaran, yaitu menulis semua anggota himpunan dalam kurung kurawal, serta antara anggotanya dipisahkan dengan koma. Jika terlampau banyak tetapi mengikuti pola tertentu, dapat digunakan notasi elipsis (...).
 
 
 
  • Cara merumuskan, yaitu dengan mendefinisikan sifat-sifat yang harus dipenuhi oleh setiap anggota himpunan tersebut. Untuk cara ini digunakan notasi pembentuk himpunan.
 
 
 

Himpunan kosong

Himpunan yang tidak memiliki anggota disebut sebagai himpunan kosong, ditulis sebagai   atau  

Himpunan bagian

 
  himpunan bagian (sejati) dari  

Himpunan   dikatakan himpunan bagian dari himpunan  , ditulis sebagai  , jika setiap anggota   terdapat dalam  . Secara formal, definisi ini dapat dirumuskan sebagai berikut:

 .

Notasi   juga dapat dibaca "Himpunan   termuat[4] dalam himpunan  " atau "Himpunan   tercakup[2] dalam himpunan  "

Definisi di atas tetap benar untuk   himpunan kosong dan   sebarang himpunan. Sehingga dapat dikatakan himpunan kosong adalah himpunan bagian dari sebarang himpunan  , ditulis  . Definisi di atas juga membenarkan benar bahwa sebarang himpunan   adalah himpunan bagian dari dirinya sendiri, ditulis  

Himpunan bagian sejati dari A menunjuk pada himpunan bagian dari A, tetapi tidak mencakup A sendiri.

 

Kebalikan dari subhimpunan adalah superhimpunan, yaitu himpunan yang lebih besar yang mencakup himpunan tersebut.

 

Kesamaan dua himpunan

Himpunan A dan B disebut sama, jika setiap anggota A adalah anggota B, dan sebaliknya, setiap anggota B adalah anggota A.

 

atau

 

Definisi di atas sangat berguna untuk membuktikan bahwa dua himpunan A dan B adalah sama. Pertama, buktikan dahulu A adalah subhimpunan B, kemudian buktikan bahwa B adalah subhimpunan A.

Himpunan ekivalen

Kardinalitas

Kardinalitas dari sebuah himpunan dapat dimengerti sebagai ukuran banyaknya anggota yang dikandung oleh himpunan tersebut. Banyaknya anggota himpunan   adalah 4. Himpunan   juga memiliki anggota sejumlah 4. Berarti kedua himpunan tersebut ekivalen satu sama lain, atau dikatakan memiliki kardinalitas yang sama.

Dua buah himpunan A dan B memiliki kardinalitas yang sama, jika terdapat fungsi korespondensi satu-satu yang memetakan A pada B. Karena dengan mudah kita membuat fungsi   yang memetakan satu-satu dan kepada himpunan A ke B, maka kedua himpunan tersebut memiliki kardinalitas yang sama.

Himpunan Denumerabel

Jika sebuah himpunan ekivalen dengan himpunan  , yaitu himpunan bilangan asli, maka himpunan tersebut disebut denumerabel. Kardinalitas dari himpunan tersebut disebut sebagai kardinalitas  .

Himpunan semua bilangan genap positif merupakan himpunan denumerabel, karena memiliki korespondensi satu-satu antara himpunan tersebut dengan himpunan bilangan asli, yang dinyatakan oleh  .

 

Himpunan Berhingga

Jika sebuah himpunan memiliki kardinalitas yang kurang dari kardinalitas  , maka himpunan tersebut adalah himpunan berhingga.

Himpunan Tercacah

Himpunan disebut tercacah jika himpunan tersebut adalah berhingga atau denumerabel.

Himpunan Non-Denumerabel

Himpunan yang tidak tercacah disebut himpunan non-denumerabel. Contoh dari himpunan ini adalah himpunan semua bilangan riil. Kardinalitas dari himpunan jenis ini disebut sebagai kardinalitas  . Pembuktian bahwa bilangan riil tidak denumerabel dapat menggunakan pembuktian diagonal.

Himpunan bilangan riil dalam interval (0,1) juga memiliki kardinalitas  , karena terdapat korespondensi satu-satu dari himpunan tersebut dengan himpunan seluruh bilangan riil, yang salah satunya adalah  .

Himpunan penyelesaian

Himpunan semesta

Operasi himpunan

Gabungan

 
Gabungan antara himpunan A dan B.

Dua himpunan atau lebih yang digabungkan bersama-sama. Operasi gabungan AB setara dengan A atau B, dan anggota himpunannya adalah semua anggota yang termasuk himpunan A ataupun B.

Contoh:

  • {1, 2} ∪ {1, 2} = {1, 2}.
  • {1, 2} ∪ {2, 3} = {1, 2, 3}.
  • {Budi} ∪ {Dani} = {Budi, Dani}.

Beberapa sifat dasar gabungan:

  • AB = BA.
  • A ∪ (BC) = (AB) ∪ C.
  • A ⊆ (AB).
  • AA = A.
  • A ∪ ∅ = A.
  • AB jika dan hanya jika AB = B.

Irisan

 
Irisan antara himpunan A dan B.

Operasi irisan AB setara dengan A dan B. Irisan merupakan himpunan baru yang anggotanya terdiri dari anggota yang dimiliki bersama antara dua atau lebih himpunan yang terhubung. Jika AB = ∅, maka A dan B dapat dikatakan saling pisah.

Contoh:

  • {1, 2} ∩ {1, 2} = {1, 2}.
  • {1, 2} ∩ {2, 3} = {2}.
  • {Budi, Cici} ∩ {Dani, Cici} = {Cici}.
  • {Budi} ∩ {Dani} = ∅.

Beberapa sifat dasar irisan:

  • AB = BA.
  • A ∩ (BC) = (AB) ∩ C.
  • ABA.
  • AA = A.
  • A ∩ ∅ = ∅.
  • AB jika dan hanya jika AB = A.

Komplemen

 
Komplemen B terhadap A.
 
Komplemen A terhadap U.
 
Beda setangkup himpunan A dan B.

Operasi pelengkap A^C setara dengan bukan A atau A'. Operasi komplemen merupakan operasi yang anggotanya terdiri dari anggota di luar himpunan tersebut.

Contoh:

  • {1, 2} \ {1, 2} = ∅.
  • {1, 2, 3, 4} \ {1, 3} = {2, 4}.

Beberapa sifat dasar komplemen:

  • A \ BB \ A untuk AB.
  • AA′ = U.
  • AA′ = ∅.
  • (A′)′ = A.
  • A \ A = ∅.
  • U′ = ∅ dan ∅′ = U.
  • A \ B = AB.

Ekstensi dari komplemen adalah diferensi simetris (pengurangan himpunan), jika diterapkan untuk himpunan A dan B atau A - B menghasilkan

 

Contohnya, diferensi simetris antara:

  • {7, 8, 9, 10} dan {9, 10, 11, 12} adalah {7, 8, 11, 12}.
  • {Ana, Budi, Dedi, Felix} dan {Budi, Cici, Dedi, Ela} adalah {Ana, Cici, Ela, Felix}.


 
Hubungan di antara 8 buah set dengan menggunakan diagram Venn

Himpunan kuasa

Himpunan kuasa (power set) dari A adalah himpunan yang terdiri dari seluruh himpunan bagian dari A. Notasinya adalah  .

Jika A = {apel, jeruk, mangga, pisang}, maka  :

 { { },
   {apel}, {jeruk}, {mangga}, {pisang},
   {apel, jeruk}, {apel, mangga}, {apel, pisang},
   {jeruk, mangga}, {jeruk, pisang}, {mangga, pisang},
   {apel, jeruk, mangga}, {apel, jeruk, pisang}, {apel, mangga, pisang}, {jeruk, mangga, pisang},
   {apel, jeruk, mangga, pisang} }

Banyaknya anggota yang terkandung dalam himpunan kuasa dari A adalah 2 pangkat banyaknya anggota A.

 

Kelas

Suatu himpunan disebut sebagai kelas, atau keluarga himpunan jika himpunan tersebut terdiri dari himpunan-himpunan. Himpunan   adalah sebuah keluarga himpunan. Perhatikan bahwa untuk sembarang himpunan A, maka himpunan kuasanya,   adalah sebuah keluarga himpunan.

Contoh berikut,   bukanlah sebuah kelas, karena mengandung anggota c yang bukan himpunan.

Fungsi Karakteristik

Fungsi karakteristik menunjukkan apakah sebuah anggota terdapat dalam sebuah himpunan atau tidak.

 

Jika   maka:

 
 
 
 
 

Terdapat korespondensi satu-satu antara himpunan kuasa   dengan himpunan dari semua fungsi karakteristik dari S. Hal ini mengakibatkan kita dapat menuliskan himpunan sebagai barisan bilangan 0 dan 1, yang menyatakan ada tidaknya sebuah anggota dalam himpunan tersebut.

Representasi Biner

Jika konteks pembicaraan adalah pada sebuah himpunan semesta S, maka setiap himpunan bagian dari S bisa dituliskan dalam barisan angka 0 dan 1, atau disebut juga bentuk biner. Bilangan biner menggunakan angka 1 dan 0 pada setiap digitnya. Setiap posisi bit dikaitkan dengan masing-masing anggota S, sehingga nilai 1 menunjukkan bahwa anggota tersebut ada, dan nilai 0 menunjukkan bahwa anggota tersebut tidak ada. Dengan kata lain, masing-masing bit merupakan fungsi karakteristik dari himpunan tersebut. Sebagai contoh, jika himpunan S = {a, b, c, d, e, f, g}, A = {a, c, e, f}, dan B = {b, c, d, f}, maka:

 Himpunan                            Representasi Biner
 ----------------------------        -------------------
                                     a b c d e f g
 S = { a, b, c, d, e, f, g }   -->   1 1 1 1 1 1 1
 A = { a,    c,    e, f    }   -->   1 0 1 0 1 1 0
 B = {    b, c, d,    f    }   -->   0 1 1 1 0 1 0

Cara menyatakan himpunan seperti ini sangat menguntungkan untuk melakukan operasi-operasi himpunan, seperti union (gabungan), interseksi (irisan), dan komplemen (pelengkap), karena kita tinggal menggunakan operasi bit untuk melakukannya. Representasi himpunan dalam bentuk biner dipakai oleh kompiler-kompiler Pascal dan juga Delphi[5].

Aljabar himpunan

  1. Hukum komutatif
    • p ∩ q ≡ q ∩ p
    • p ∪ q ≡ q ∪ p
  2. Hukum asosiatif
    • (p ∩ q) ∩ r ≡ p ∩ (q ∩ r)
    • (p ∪ q) ∪ r ≡ p ∪ (q ∪ r)
  3. Hukum distributif
    • p ∩ (q ∪ r) ≡ (p ∩ q) ∪ (p ∩ r)
    • p ∪ (q ∩ r) ≡ (p ∪ q) ∩ (p ∪ r)
  4. Hukum identitas
    • p ∩ S ≡ p
    • p ∪ ∅ ≡ p
  5. Hukum ikatan
    • p ∩ ∅ ≡ ∅
    • p ∪ S ≡ S
  6. Hukum negasi
    • p ∩ p' ≡ ∅
    • p ∪ p' ≡ S
  7. Hukum negasi ganda
    • (p')' ≡ p
  8. Hukum idempotent
    • p ∩ p ≡ p
    • p ∪ p ≡ p
  9. Hukum De Morgan
    • (p ∩ q)' ≡ p' ∪ q'
    • (p ∪ q)' ≡ p' ∩ q'
  10. Hukum penyerapan
    • p ∩ (p ∪ q) ≡ p
    • p ∪ (p ∩ q) ≡ p
  11. Negasi S dan ∅
    • S' ≡ ∅
    • ∅' ≡ S

******************************

Notasi pembangun himpunan dapat menimbulkan berbagai paradoks, contohnya adalah himpunan berikut:

 

Himpunan A tidak mungkin ada, karena jika A ada, berarti harus mengandung anggota yang bukan merupakan anggotanya. Namun jika bukan anggotanya, lalu bagaimana mungkin A bisa mengandung anggota tersebut.

******************************

Himpunan-himpunan bilangan yang cukup dikenal, seperti bilangan kompleks, riil, bulat, dan sebagainya, menggunakan notasi yang khusus.[6]

Bilangan Asli Bulat Rasional Riil Kompleks
Notasi          

Simbol-simbol khusus yang dipakai dalam teori himpunan adalah:[6]

Referensi

  1. ^ "Set | mathematics and logic". Encyclopedia Britannica (dalam bahasa Inggris). Diakses tanggal 2020-08-21. 
  2. ^ a b Hakim., Nasoetion, Andi (1982). Landasan matematika. Bhratara Karya Aksara. OCLC 974924773. 
  3. ^ Ferreirós, José (2020). Zalta, Edward N., ed. The Stanford Encyclopedia of Philosophy (edisi ke-Summer 2020). Metaphysics Research Lab, Stanford University. 
  4. ^ a b Marsudi (2010-10-08). Logika dan Teori Himpunan. Universitas Brawijaya Press. ISBN 978-979-8074-51-6. 
  5. ^ Delphi 5 Memory Management Diarsipkan 2007-08-05 di Wayback Machine.
  6. ^ a b "Comprehensive List of Set Theory Symbols". Math Vault (dalam bahasa Inggris). 2020-04-11. Diakses tanggal 2020-08-22. 
  • Lipschutz, S. Set Theory. McGraw-Hill

Bacaan lanjutan

Pranala luar