Irisan dari dua himpunan yang dinyatakan dengan diagram Venn

Dalam matematika, himpunan (disebut juga kumpulan, kelompok, gugus, atau set) dapat dibayangkan sebagai kumpulan objek yang memiliki sifat yang dapat didefinisikan dengan jelas, atau lebih jelasnya adalah segala koleksi benda-benda tertentu yang dianggap sebagai satu kesatuan.[1] Konsep himpunan seperti ini pertama kali dikemukakan oleh seorang matematikawan Jerman, Georg Cantor, pada akhir abad ke-19. Cantor mendefinisikan himpunan sebagai "Hasil usaha penghimpunan beberapa benda yang memiliki suatu ciri pembeda tertentu, menjadi suatu kesatuan".[2]

Teori himpunan dapat dianggap sebagai dasar yang membangun hampir semua aspek dari matematika dan merupakan sumber semua matematika diturunkan.[3]

Menyatakan dan menuliskan himpunan

 
Hubungan 8 himpunan asam amino dengan menggunakan diagram Venn.

Objek dalam suatu himpunan disebut anggota. Notasi   digunakan untuk menyatakan keanggotaan himpunan. Misalnya pernyataan "   anggota   " dapat ditulis sebagai  . Ingkaran pernyataan itu (  bukan anggota  ) dapat ditulis sebagai  . Nama himpunan lazim ditulis menggunakan huruf besar, misalnya  ,   atau  , sementara anggota himpunan ditulis menggunakan huruf kecil ( ,  ,  ).

Himpunan dapat dinyatakan dan dituliskan secara baku[4] dengan dua cara berikut, yaitu:

  • Cara pendaftaran, yaitu menulis semua anggota himpunan dalam kurung kurawal, serta antara anggotanya dipisahkan dengan koma. Jika terlampau banyak tetapi mengikuti pola tertentu, dapat digunakan notasi elipsis (...).
 
 
 
  • Cara merumuskan, yaitu dengan mendefinisikan sifat-sifat yang harus dipenuhi oleh setiap anggota himpunan tersebut. Untuk cara ini digunakan notasi pembentuk himpunan.
 
 
 

Himpunan juga dapat digambarkan dengan diagram Venn.

Himpunan kosong

Himpunan yang tidak memiliki anggota disebut sebagai himpunan kosong, ditulis sebagai   atau  

Himpunan bagian

 
  himpunan bagian (sejati) dari  

Himpunan   dikatakan himpunan bagian dari himpunan  , ditulis sebagai  , jika setiap anggota   terdapat dalam  . Secara formal, definisi ini dapat dirumuskan sebagai berikut:

 .

Notasi   juga dapat dibaca "Himpunan   termuat[4] dalam himpunan  " atau "Himpunan   tercakup[2] dalam himpunan  "

Definisi di atas tetap benar untuk   himpunan kosong dan   sebarang himpunan. Sehingga dapat dikatakan himpunan kosong adalah himpunan bagian dari sebarang himpunan  , ditulis  . Definisi di atas juga membenarkan benar bahwa sebarang himpunan   adalah himpunan bagian dari dirinya sendiri, ditulis  

Himpunan bagian sejati dari   menunjuk pada himpunan bagian dari  , tetapi tidak mencakup   sendiri.

 

Kebalikan dari himpunan bagian adalah superhimpunan, yaitu himpunan yang lebih besar yang mencakup himpunan tersebut.

 

Kesamaan dua himpunan

Himpunan   dan B disebut sama, jika setiap anggota   adalah anggota B, dan sebaliknya, setiap anggota B adalah anggota  .

 .

Dengan menggunakan definisi himpunan bagian, kesamaan dua himpunan juga dapat dinyatakan sebagai berikut:

 .

Definisi di atas sangat berguna untuk membuktikan bahwa dua himpunan   dan B adalah sama. Pertama, buktikan dahulu   adalah himpunan bagian B, kemudian buktikan bahwa B adalah himpunan bagian  .

Kardinalitas himpunan

Kardinalitas suatu himpunan dapat dimengerti sebagai ukuran banyaknya anggota yang ada dalam himpunan tersebut.

Secara formal, dua himpunan   dan   memiliki kardinalitas yang sama, jika terdapat korespondensi satu-satu yang memetakan   pada  .

Kardinalitas himpunan hingga dan tak hingga

Jika suatu himpunan ekivalen dengan himpunan  , yaitu himpunan semua bilangan asli, maka himpunan tersebut disebut himpunan terbilang.[5] Kardinalitas dari himpunan tersebut disebut sebagai kardinalitas  . Jika suatu himpunan memiliki kardinalitas yang kurang dari kardinalitas  , maka himpunan tersebut adalah himpunan berhingga.

Suatu himpunan disebut terhitung jika himpunan tersebut adalah berhingga atau terbilang.

Himpunan yang tidak terhitung disebut himpunan tak terhitung. Contoh dari himpunan ini adalah himpunan semua bilangan riil. Kardinalitas dari himpunan jenis ini disebut sebagai kardinalitas  . Pembuktian bahwa bilangan riil tidak denumerabel dapat menggunakan pembuktian diagonal. Himpunan bilangan riil dalam interval (0,1) juga memiliki kardinalitas  , karena terdapat korespondensi satu-satu dari himpunan tersebut dengan himpunan seluruh bilangan riil, yang salah satunya adalah  .

Himpunan kuasa

Himpunan kuasa dari himpunan   adalah himpunan yang terdiri dari seluruh himpunan bagian dari  . Notasinya adalah  .

Misal, jika A = {apel, jeruk, mangga, pisang}, maka  :

 { { },
   {apel}, {jeruk}, {mangga}, {pisang},
   {apel, jeruk}, {apel, mangga}, {apel, pisang},
   {jeruk, mangga}, {jeruk, pisang}, {mangga, pisang},
   {apel, jeruk, mangga}, {apel, jeruk, pisang}, {apel, mangga, pisang}, {jeruk, mangga, pisang},
   {apel, jeruk, mangga, pisang} }

Banyaknya anggota yang terkandung dalam himpunan kuasa dari   adalah 2 pangkat banyaknya anggota  .

 

Himpunan penyelesaian

Himpunan penyelesaian adalah himpunan semua nilai yang memenuhi suatu relasi matematika seperti persamaan atau pertidaksamaaan.[6]

Himpunan semesta

Dalam penerapan teori himpunan,[7] himpunan semesta atau universum atau semesta pembicaraan adalah himpunan semua objek yang sedang dibicarakan. Himpunan semesta biasa dilambangkan dengan   (dari "semesta") atau   (dari "universum").

Dalam teori himpunan aksomatik, pengertian himpunan semesta ini tidak ada.

Operasi himpunan

Gabungan

 
Gabungan himpunan   dan  .

Gabungan himpunan   dan  . adalah himpunan yang anggotanya adalah anggota A atau B. Dinotasikan  .

Contoh:

  • {1, 2} ∪ {1, 2} = {1, 2}.
  • {1, 2} ∪ {2, 3} = {1, 2, 3}.
  • {Budi} ∪ {Dani} = {Budi, Dani}.

Beberapa sifat dasar gabungan:

Irisan

 
Irisan antara himpunan   dan  .

Irisan himpunan   dan  . adalah himpunan yang anggotanya adalah anggota A dan B. Dinotasikan  .

Jika  , maka A dan B dapat dikatakan saling pisah.

Contoh:

  • {1, 2} ∩ {1, 2} = {1, 2}.
  • {1, 2} ∩ {2, 3} = {2}.
  • {Budi, Cici} ∩ {Dani, Cici} = {Cici}.
  • {Budi} ∩ {Dani} = ∅.

Beberapa sifat dasar irisan:

Komplemen

Pelengkap (komplemen) himpunan   adalah himpunan yang anggotanya bukan anggota  . Dinotasikan   atau  .

Contoh:

  • {1, 2} \ {1, 2} = ∅.
  • {1, 2, 3, 4} \ {1, 3} = {2, 4}.

Beberapa sifat dasar komplemen:

  • A \ BB \ A untuk AB.
  • (A′)′ = A.
  • A \ A = ∅.
  • A \ B = AB.

Konsep komplemen dapat diperluas menjadi beda setangkup (pengurangan himpunan), jika diterapkan untuk himpunan A dan B atau A - B menghasilkan

 

Contohnya, diferensi simetris antara:

  • {7, 8, 9, 10} dan {9, 10, 11, 12} adalah {7, 8, 11, 12}.
  • {Ana, Budi, Dedi, Felix} dan {Budi, Cici, Dedi, Ela} adalah {Ana, Cici, Ela, Felix}.
 
Komplemen B terhadap  .
   
 
Komplemen   terhadap U.
   
 
Beda setangkup himpunan   dan B.

Aljabar himpunan

  1. Hukum komutatif
    • p ∩ q ≡ q ∩ p
    • p ∪ q ≡ q ∪ p
  2. Hukum asosiatif
    • (p ∩ q) ∩ r ≡ p ∩ (q ∩ r)
    • (p ∪ q) ∪ r ≡ p ∪ (q ∪ r)
  3. Hukum distributif
    • p ∩ (q ∪ r) ≡ (p ∩ q) ∪ (p ∩ r)
    • p ∪ (q ∩ r) ≡ (p ∪ q) ∩ (p ∪ r)
  4. Hukum identitas
    • p ∩ S ≡ p
    • p ∪ ∅ ≡ p
  5. Hukum ikatan
    • p ∩ ∅ ≡ ∅
    • p ∪ S ≡ S
  6. Hukum negasi
    • p ∩ p' ≡ ∅
    • p ∪ p' ≡ S
  7. Hukum negasi ganda
    • (p')' ≡ p
  8. Hukum idempotent
    • p ∩ p ≡ p
    • p ∪ p ≡ p
  9. Hukum De Morgan
    • (p ∩ q)' ≡ p' ∪ q'
    • (p ∪ q)' ≡ p' ∩ q'
  10. Hukum penyerapan
    • p ∩ (p ∪ q) ≡ p
    • p ∪ (p ∩ q) ≡ p
  11. Negasi S dan ∅
    • S' ≡ ∅
    • ∅' ≡ S

Kelas

Suatu himpunan disebut sebagai kelas, atau keluarga himpunan jika himpunan tersebut terdiri dari himpunan-himpunan. Himpunan   adalah sebuah keluarga himpunan. Perhatikan bahwa untuk sembarang himpunan A, maka himpunan kuasanya,   adalah sebuah keluarga himpunan.

Contoh berikut,   bukanlah sebuah kelas, karena mengandung anggota c yang bukan himpunan.

Fungsi Karakteristik

Fungsi karakteristik menunjukkan apakah sebuah anggota terdapat dalam sebuah himpunan atau tidak.

 

Jika   maka:

 
 
 
 
 

Terdapat korespondensi satu-satu antara himpunan kuasa   dengan himpunan dari semua fungsi karakteristik dari S. Hal ini mengakibatkan kita dapat menuliskan himpunan sebagai barisan bilangan 0 dan 1, yang menyatakan ada tidaknya sebuah anggota dalam himpunan tersebut.

Representasi Biner

Jika konteks pembicaraan adalah pada sebuah himpunan semesta S, maka setiap himpunan bagian dari S bisa dituliskan dalam barisan angka 0 dan 1, atau disebut juga bentuk biner. Bilangan biner menggunakan angka 1 dan 0 pada setiap digitnya. Setiap posisi bit dikaitkan dengan masing-masing anggota S, sehingga nilai 1 menunjukkan bahwa anggota tersebut ada, dan nilai 0 menunjukkan bahwa anggota tersebut tidak ada. Dengan kata lain, masing-masing bit merupakan fungsi karakteristik dari himpunan tersebut. Sebagai contoh, jika himpunan S = {a, b, c, d, e, f, g}, A = {a, c, e, f}, dan B = {b, c, d, f}, maka:

 Himpunan                            Representasi Biner
 ----------------------------        -------------------
                                     a b c d e f g
 S = { a, b, c, d, e, f, g }   -->   1 1 1 1 1 1 1
 A = { a,    c,    e, f    }   -->   1 0 1 0 1 1 0
 B = {    b, c, d,    f    }   -->   0 1 1 1 0 1 0

Cara menyatakan himpunan seperti ini sangat menguntungkan untuk melakukan operasi-operasi himpunan, seperti union (gabungan), interseksi (irisan), dan komplemen (pelengkap), karena kita tinggal menggunakan operasi bit untuk melakukannya. Representasi himpunan dalam bentuk biner dipakai oleh kompiler-kompiler Pascal dan juga Delphi[8].

******************************

Notasi pembangun himpunan dapat menimbulkan berbagai paradoks, contohnya adalah himpunan berikut:

 

Himpunan   tidak mungkin ada, karena jika   ada, berarti harus mengandung anggota yang bukan merupakan anggotanya. Namun jika bukan anggotanya, lalu bagaimana mungkin   bisa mengandung anggota tersebut.

******************************

Himpunan-himpunan bilangan yang cukup dikenal, seperti bilangan kompleks, riil, bulat, dan sebagainya, menggunakan notasi yang khusus.[9]

Bilangan Asli Bulat Rasional Riil Kompleks
Notasi          

Simbol-simbol khusus yang dipakai dalam teori himpunan adalah:[9]

Referensi

  1. ^ "Set | mathematics and logic". Encyclopedia Britannica (dalam bahasa Inggris). Diakses tanggal 2020-08-21. 
  2. ^ a b Hakim., Nasoetion, Andi (1982). Landasan matematika. Bhratara Karya Aksara. OCLC 974924773. 
  3. ^ Ferreirós, José (2020). Zalta, Edward N., ed. The Stanford Encyclopedia of Philosophy (edisi ke-Summer 2020). Metaphysics Research Lab, Stanford University. 
  4. ^ a b Marsudi (2010-10-08). Logika dan Teori Himpunan. Universitas Brawijaya Press. ISBN 978-979-8074-51-6. 
  5. ^ Hendra Gunawan (2017). Menuju Tak Terhingga. Bandung: ITB Press. 
  6. ^ Julan Hernadi (2021). Fondasi Matematika & Metode Pembuktian. Ponorogo: UMPO Press. 
  7. ^ Setiadji (2009). Himpunan & Logika Samar serta Aplikasinya. Yogyakarta: Graha Ilmu. ISBN 978-979-756-488-9. 
  8. ^ Delphi 5 Memory Management Diarsipkan 2007-08-05 di Wayback Machine.
  9. ^ a b "Comprehensive List of Set Theory Symbols". Math Vault (dalam bahasa Inggris). 2020-04-11. Diakses tanggal 2020-08-22. 
  • Lipschutz, S. Set Theory. McGraw-Hill

Bacaan lanjutan

Pranala luar