Irisan dari dua himpunan yang dinyatakan dengan diagram Venn

Dalam matematika, himpunan (disebut juga kumpulan, kelompok, gugus, atau set) dapat dibayangkan sebagai kumpulan benda berbeda yang terdefinisi dengan jelas dan dipandang sebagai satu kesatuan utuh[1]. Dengan terdefinisi yang jelas itu maka dapat ditentukan dengan tegas apakah suatu objek termasuk anggota suatu himpunan atau bukan.

Konsep himpunan seperti saat sekarang ini pertama kali dikemukakan oleh seorang matematikawan Jerman, Georg Cantor, pada akhir abad ke-19. Cantor mendefinisikan himpunan sebagai "Hasil usaha pengumpulan beberapa benda yang memiliki suatu ciri pembeda tertentu dan dapat-diperbedakan dalam intuisi atau pikiran kita (benda-benda itu disebut 'anggota'), menjadi suatu kesatuan".[2][3]

Himpunan merupakan satu di antara konsep dasar matematika, karena hampir semua aspek matematika dapat dibangun dengan konsep himpunan ini.[4] Kajian lebih lanjut mengenai himpunan dipelajari dalam teori himpunan.

Himpunan dan anggotanya

Himpunan secara sederhana dapat diartikan sebagai kumpulan objek-objek. Pengertian "mengumpulkan" atau "menghimpun" sendiri sudah jelas sebab telah sering dilakukan dalam keseharian. Beberapa organisasi menggunakan kata himpunan pada namanya menunjukkan hal tersebut [5]. Pengertian himpunan dapat digambarkan sebagai suatu "karung" atau "kotak" yang berisikan unsur-unsurnya[6]. Penggambaran ini dinisbatkan pada Richard Dedekind [7], dan terlukiskan dengan baik dengan diagram Euler-Venn.

Objek dalam suatu himpunan disebut anggota (disebut juga elemen atau unsur). Anggota suatu himpunan dapat berupa apa saja, baik itu bilangan, titik, fungsi, dan lain sebagainya. Termasuk objek-objek seperti sekawanan itik di sawah, semua buku di perpustakaan,sekalian hari dalam sepekan, seluruh huruf dalam alfabet, dan kelimapuluhdua kartu dalam satu set remi.

Keanggotaan suatu objek dapat dinyatakan dengan notasi  . Pernyataan dengan notasi   dapat dibaca:

  • "   anggota   ";
  • "  di dalam   " [8];
  • "  termasuk dalam   " [9];
  • "  milik himpunan   " [10].

Ingkaran pernyataan tersebut (  bukan anggota  ) dapat ditulis sebagai  . [8]

Nama himpunan lazim ditulis menggunakan huruf besar, misalnya  ,   atau  , sementara anggota himpunan ditulis menggunakan huruf kecil ( ,  ,  ).

Kesamaan dua himpunan

Himpunan didefinisikan berdasar objek-objek yang termasuk di dalamnya. Dua himpunan bisa saja sama walau disajikan dengan cara yang berbeda[11], seperti urutan anggotanya tidak sama atau dua himpunan itu dinyatakan dengan penggambaran yang berbeda. Himpunan   dan   disebut sama, jika setiap anggota   adalah anggota  , dan sebaliknya, setiap anggota   adalah anggota  .

 .

Prinsip kesamaan ini sering dirumuskan sebagai aksioma perluasan.

Dengan prinsip ini dapat kita mengatakan   dan  . Contoh lainnya, kita dapat mengatakan bahwa himpunan tiga bilangan prima pertama sama dengan himpunan akar-akar persamaan  .

Menyatakan dan menuliskan himpunan

 
Hubungan 8 himpunan asam amino dengan menggunakan diagram Venn.

Himpunan dapat dinyatakan dan dituliskan secara baku[12] dengan dua cara.

Pertama, cara pendaftaran, yaitu dengan menulis semua anggota himpunan dalam kurung kurawal, serta antara anggotanya dipisahkan dengan koma. Cara ini baik digunakan untuk himpunan dengan banyak anggota berhingga, terutama juka banyaknya lumayan sedikit. Contohnya himpunan buah . Tanda koma dapat diganti dengan tanda titik koma apabila perlu untuk menghindari kekeliruan dengan tanda koma bilangan desimal, seperti  .

Jika terlampau banyak untuk dinyatakan satu-persatu bahkan mungkin tak berhingga, tetapi mengikuti pola tertentu, maka dapat digunakan notasi elipsis (...). Contohnya himpunan huruf dalam alfabet   atau himpunan bilangan asli  .

Kedua, cara merumuskan, yaitu dengan mendefinisikan sifat-sifat yang harus dipenuhi oleh setiap anggota himpunan tersebut. Untuk cara ini digunakan notasi pembentuk himpunan.

 
 
 

Himpunan kosong

Himpunan yang tidak memiliki anggota disebut sebagai himpunan kosong, ditulis sebagai   atau  

Himpunan bagian

 
  himpunan bagian (sejati) dari  

Himpunan   dikatakan himpunan bagian dari himpunan  , ditulis sebagai  , jika setiap anggota   terdapat dalam  . Secara formal, definisi ini dapat dirumuskan sebagai berikut:

 .

Notasi   juga dapat dibaca "Himpunan   termuat[12] dalam himpunan  " atau "Himpunan   tercakup[2] dalam himpunan  "

Definisi di atas tetap benar untuk   himpunan kosong dan   sebarang himpunan. Sehingga dapat dikatakan himpunan kosong adalah himpunan bagian dari sebarang himpunan  , ditulis  . Definisi di atas juga membenarkan benar bahwa sebarang himpunan   adalah himpunan bagian dari dirinya sendiri, ditulis  

Himpunan bagian sejati dari   menunjuk pada himpunan bagian dari  , tetapi tidak mencakup   sendiri.

 

Kebalikan dari himpunan bagian adalah superhimpunan, yaitu himpunan yang lebih besar yang mencakup himpunan tersebut.

 

Dengan menggunakan definisi himpunan bagian, kesamaan dua himpunan juga dapat dinyatakan sebagai berikut:

 .

Definisi di atas sangat berguna untuk membuktikan bahwa dua himpunan   dan B adalah sama. Pertama, buktikan dahulu   adalah himpunan bagian B, kemudian buktikan bahwa B adalah himpunan bagian  .

Kardinalitas himpunan

Kardinalitas suatu himpunan dapat dimengerti sebagai ukuran banyaknya anggota yang ada dalam himpunan tersebut.

Secara formal, dua himpunan   dan   memiliki kardinalitas yang sama, jika terdapat korespondensi satu-satu yang memetakan   pada  .

Kardinalitas himpunan hingga dan tak hingga

Jika suatu himpunan ekivalen dengan himpunan  , yaitu himpunan semua bilangan asli, maka himpunan tersebut disebut himpunan terbilang.[13] Kardinalitas dari himpunan tersebut disebut sebagai kardinalitas  . Jika suatu himpunan memiliki kardinalitas yang kurang dari kardinalitas  , maka himpunan tersebut adalah himpunan berhingga.

Suatu himpunan disebut terhitung jika himpunan tersebut adalah berhingga atau terbilang.

Himpunan yang tidak terhitung disebut himpunan tak terhitung. Contoh dari himpunan ini adalah himpunan semua bilangan riil. Kardinalitas dari himpunan jenis ini disebut sebagai kardinalitas  . Pembuktian bahwa bilangan riil tidak denumerabel dapat menggunakan pembuktian diagonal. Himpunan bilangan riil dalam interval (0,1) juga memiliki kardinalitas  , karena terdapat korespondensi satu-satu dari himpunan tersebut dengan himpunan seluruh bilangan riil, yang salah satunya adalah  .

Himpunan kuasa

Himpunan kuasa dari himpunan   adalah himpunan yang terdiri dari seluruh himpunan bagian dari  . Notasinya adalah  . Banyaknya anggota yang terkandung dalam himpunan kuasa dari   adalah 2 pangkat banyaknya anggota  .

 

Himpunan penyelesaian

Himpunan penyelesaian adalah himpunan semua nilai yang memenuhi suatu relasi matematika seperti persamaan atau pertidaksamaaan.[14]

Himpunan semesta

Dalam penerapan teori himpunan,[15] himpunan semesta atau universum atau semesta pembicaraan adalah himpunan semua objek yang sedang dibicarakan. Himpunan semesta biasa dilambangkan dengan   (dari "semesta") atau   (dari "universum").

Dalam teori himpunan aksomatik, pengertian himpunan semesta ini tidak ada. "Himpunan beranggotakan semua himpunan" dapat menimbulkan berbagai paradoks, contohnya adalah himpunan berikut:

 

Himpunan   tidak mungkin ada, karena jika   ada, berarti harus mengandung anggota yang bukan merupakan anggotanya. Namun jika bukan anggotanya, lalu bagaimana mungkin   bisa mengandung anggota tersebut.

Operasi himpunan

Gabungan

 
Gabungan himpunan   dan  .

Gabungan himpunan   dan  . adalah himpunan yang anggotanya adalah anggota A atau B. Dinotasikan  .

Contoh:

  • {1, 2} ∪ {1, 2} = {1, 2}.
  • {1, 2} ∪ {2, 3} = {1, 2, 3}.
  • {Budi} ∪ {Dani} = {Budi, Dani}.

Beberapa sifat dasar gabungan:

Irisan

 
Irisan antara himpunan   dan  .

Irisan himpunan   dan  . adalah himpunan yang anggotanya adalah anggota A dan B. Dinotasikan  .

Jika  , maka A dan B dapat dikatakan saling pisah.

Contoh:

  • {1, 2} ∩ {1, 2} = {1, 2}.
  • {1, 2} ∩ {2, 3} = {2}.
  • {Budi, Cici} ∩ {Dani, Cici} = {Cici}.
  • {Budi} ∩ {Dani} = ∅.

Beberapa sifat dasar irisan:

Komplemen

Pelengkap (komplemen) himpunan   adalah himpunan yang anggotanya bukan anggota  . Dinotasikan   atau  .

Contoh:

  • {1, 2} \ {1, 2} = ∅.
  • {1, 2, 3, 4} \ {1, 3} = {2, 4}.

Beberapa sifat dasar komplemen:

  • A \ BB \ A untuk AB.
  • (A′)′ = A.
  • A \ A = ∅.
  • A \ B = AB.

Konsep komplemen dapat diperluas menjadi beda setangkup (pengurangan himpunan), jika diterapkan untuk himpunan A dan B atau A - B menghasilkan

 

Contohnya, diferensi simetris antara:

  • {7, 8, 9, 10} dan {9, 10, 11, 12} adalah {7, 8, 11, 12}.
  • {Ana, Budi, Dedi, Felix} dan {Budi, Cici, Dedi, Ela} adalah {Ana, Cici, Ela, Felix}.
 
Produk kertesian (perkalian himpunan) {\displaystyle A} X B (A dan B) dan anggota himpunan A={x,y,z} dan B={1,2,3}.

Hasil Kali Kartesian atau perkalian himpunan merupakan operasi yang menggabungkan anggota suatu himpunan dengan himpunan lainnya. Perkalian himpunan antara A dan B didefinisikan dengan A × B. Anggota himpunan | A × B | adalah pasangan terurut (a,b) dimana a adalah anggota himpunan {\displaystyle A} dan b adalah anggota himpunan B.

Contoh:

  • {1, 2} × {x, y} = {(1, x), (1, y), (2, x), (2, y)}.
  • {1, 2} × {a, b, c} = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c) }.
  • {1, 2} × {1, 2} = {(1, 1), (1, 2), (2, 1), (2, 2)}.

Beberapa sifat dasar himpunan perkalian:

  • A × ∅ = ∅.
  • A × (BC) = (A × B) ∪ (A × C).
  • (AB) × C = (A × C) ∪ (B × C).
  • | A × B | = | B × A | = | A | × | B |.
 
Komplemen B terhadap  .
 
Komplemen   terhadap U.
 
Beda setangkup himpunan   dan B.

Aljabar himpunan

Operasi antara dua himpunan atau lebih akan mematuhi berbagai hukum yang merupakan identitas. Beberapa hukum operasi himpunan ini mirip dengan hukum yang berlaku pada operasi bilangan riil. Sehingga hukum-hukum ini juga disebut hukum aljabar himpunan[11].

  1. Hukum komutatif
    • p ∩ q ≡ q ∩ p
    • p ∪ q ≡ q ∪ p
  2. Hukum asosiatif
    • (p ∩ q) ∩ r ≡ p ∩ (q ∩ r)
    • (p ∪ q) ∪ r ≡ p ∪ (q ∪ r)
  3. Hukum distributif
    • p ∩ (q ∪ r) ≡ (p ∩ q) ∪ (p ∩ r)
    • p ∪ (q ∩ r) ≡ (p ∪ q) ∩ (p ∪ r)
  4. Hukum identitas
    • p ∩ S ≡ p
    • p ∪ ∅ ≡ p
  5. Hukum ikatan
    • p ∩ ∅ ≡ ∅
    • p ∪ S ≡ S
  6. Hukum negasi
    • p ∩ p' ≡ ∅
    • p ∪ p' ≡ S
  7. Hukum negasi ganda
    • (p')' ≡ p
  8. Hukum idempotent
    • p ∩ p ≡ p
    • p ∪ p ≡ p
  9. Hukum De Morgan
    • (p ∩ q)' ≡ p' ∪ q'
    • (p ∪ q)' ≡ p' ∩ q'
  10. Hukum penyerapan
    • p ∩ (p ∪ q) ≡ p
    • p ∪ (p ∩ q) ≡ p
  11. Negasi S dan ∅
    • S' ≡ ∅
    • ∅' ≡ S
  1 1 1 1 1 1 1
 A = { a,    c,    e, f    }   -->   1 0 1 0 1 1 0
 B = {    b, c, d,    f    }   -->   0 1 1 1 0 1 0

Cara menyatakan himpunan seperti ini sangat menguntungkan untuk melakukan operasi-operasi himpunan, seperti union (gabungan), interseksi (irisan), dan komplemen (pelengkap), karena kita tinggal menggunakan operasi bit untuk melakukannya. Representasi himpunan dalam bentuk biner dipakai oleh kompiler-kompiler Pascal dan juga Delphi[16].

-->

Lihat juga

Referensi

  1. ^ Afidah Khairunnisa (2018). Matematika Dasar. Depok: Rajawali Pers. ISBN 978-979-769-764-8. 
  2. ^ a b Hakim., Nasoetion, Andi (1982). Landasan matematika. Bhratara Karya Aksara. OCLC 974924773. 
  3. ^ Prof. Dr. Wahyudin M.Pd. (2019). Hakikat dan Sejarah Matematika. Tanggerang Selatan: Universitas Terbuka. 
  4. ^ Ferreirós, José (2020). Zalta, Edward N., ed. The Stanford Encyclopedia of Philosophy (edisi ke-Summer 2020). Metaphysics Research Lab, Stanford University. 
  5. ^ Dumairy (2003). Matematika Terapan Untuk Bisnis dan Ekonomi. Yogyakarta: BPFE. 
  6. ^ Halmos, Paul Richard (1960). Naive Set Theory (dalam bahasa Inggris). Van Nostrand. ISBN 978-3-540-90092-4. 
  7. ^ Oliver, Alex; Smiley, Timothy (2006). "What Are Sets and What Are They For?". Philosophical Perspectives. 20: 123–155. ISSN 1520-8583. 
  8. ^ a b Lipschutz, Seymour (1995). Teori Himpunan. Diterjemahkan oleh Pantur Silaban. Jakarta: Erlangga. 
  9. ^ Walpole, Ronald E. (1995). Pengantar Statistika. Diterjemahkan oleh Ir. Bambang Sumantri. Jakarta: Gramedia Pustaka Utama. 
  10. ^ Dr. Jaka Nugraha (2020). Pengantar Peluang dan Distribusi. Sleman: Deepublish. 
  11. ^ a b Rinaldi Munir (2010). Matematika Diskrit. Bandung: Informatika Bandung. 
  12. ^ a b Marsudi (2010-10-08). Logika dan Teori Himpunan. Universitas Brawijaya Press. ISBN 978-979-8074-51-6. 
  13. ^ Hendra Gunawan (2017). Menuju Tak Terhingga. Bandung: ITB Press. 
  14. ^ Julan Hernadi (2021). Fondasi Matematika & Metode Pembuktian. Ponorogo: UMPO Press. 
  15. ^ Setiadji (2009). Himpunan & Logika Samar serta Aplikasinya. Yogyakarta: Graha Ilmu. ISBN 978-979-756-488-9. 
  16. ^ Delphi 5 Memory Management Diarsipkan 2007-08-05 di Wayback Machine.

Bacaan lanjutan

Pranala luar