Pengguna:Hadithfajri/Himpunan
Ini adalah bak pasir pribadi Hadithfajri. Bak pasir ini khusus milik Hadithfajri. Kegunaannya adalah sebagai halaman uji coba penyuntingan dan dapat ditemukan di halaman pribadi. Perlu diingat, ini bukanlah artikel. Untuk mencobanya, klik di sini. Jika ingin menggunakan Bak pasir Wikipedia, klik di sini
|
Dalam matematika, himpunan (disebut juga kumpulan, kelompok, gugus, atau set) dapat dibayangkan sebagai kumpulan benda berbeda yang terdefinisi dengan jelas dan dipandang sebagai satu kesatuan utuh[1]. Dengan terdefinisi yang jelas itu maka dapat ditentukan dengan tegas apakah suatu objek termasuk anggota suatu himpunan atau bukan.
Konsep himpunan seperti saat sekarang ini pertama kali dikemukakan oleh seorang matematikawan Jerman, Georg Cantor, pada akhir abad ke-19. Cantor mendefinisikan himpunan sebagai "Hasil usaha pengumpulan beberapa benda yang memiliki suatu ciri pembeda tertentu dan dapat-diperbedakan dalam intuisi atau pikiran kita (benda-benda itu disebut 'anggota'), menjadi suatu kesatuan".[2][3]
Himpunan merupakan satu di antara konsep dasar matematika, karena hampir semua aspek matematika dapat dibangun dengan konsep himpunan ini.[4] Kajian lebih lanjut mengenai himpunan dipelajari dalam teori himpunan.
Himpunan dan anggotanya
Himpunan secara sederhana dapat diartikan sebagai kumpulan objek-objek. Pengertian "mengumpulkan" atau "menghimpun" sendiri sudah jelas sebab telah sering dilakukan dalam keseharian. Beberapa organisasi menggunakan kata himpunan pada namanya menunjukkan hal tersebut [5]. Pengertian himpunan dapat digambarkan sebagai suatu "karung" atau "kotak" yang berisikan unsur-unsurnya[6]. Penggambaran ini dinisbatkan pada Richard Dedekind [7], dan terlukiskan dengan baik dengan diagram Euler-Venn.
-
Suatu himpunan segibanyak
-
Himpunan yang sama digambarkan dalam "kotak".
-
Himpunan yang sama digambarkan sebagai "kumpulan benda dalam kotak".
Objek dalam suatu himpunan disebut anggota (disebut juga elemen atau unsur). Anggota suatu himpunan dapat berupa apa saja, baik itu bilangan, titik, fungsi, dan lain sebagainya. Termasuk objek-objek seperti sekawanan itik di sawah, semua buku di perpustakaan,sekalian hari dalam sepekan, seluruh huruf dalam alfabet, dan kelimapuluhdua kartu dalam satu set remi.
Keanggotaan suatu objek dapat dinyatakan dengan notasi . Pernyataan dengan notasi dapat dibaca:
Ingkaran pernyataan tersebut ( bukan anggota ) dapat ditulis sebagai . [8]
Nama himpunan lazim ditulis menggunakan huruf besar, misalnya , atau , sementara anggota himpunan ditulis menggunakan huruf kecil ( , , ).
Menyatakan dan menuliskan himpunan
Himpunan dapat dinyatakan dan dituliskan secara baku[11] dengan dua cara.
Pertama, cara pendaftaran, yaitu dengan menulis semua anggota himpunan dalam kurung kurawal, serta antara anggotanya dipisahkan dengan koma. Cara ini baik digunakan untuk himpunan dengan banyak anggota berhingga, terutama juka banyaknya lumayan sedikit. Contohnya himpunan buah . Tanda koma dapat diganti dengan tanda titik koma apabila perlu untuk menghindari kekeliruan dengan tanda koma bilangan desimal, seperti .
Jika terlampau banyak untuk dinyatakan satu-persatu bahkan mungkin tak berhingga, tetapi mengikuti pola tertentu, maka dapat digunakan notasi elipsis (...). Contohnya himpunan huruf dalam alfabet atau himpunan bilangan asli .
Kedua, cara merumuskan, yaitu dengan mendefinisikan sifat-sifat yang harus dipenuhi oleh setiap anggota himpunan tersebut. Untuk cara ini syarat tersebut dapat langsung diperkatakan atau ditulis menggunakan notasi pembentuk himpunan.
Kesamaan dua himpunan
Himpunan didefinisikan berdasar objek-objek yang termasuk di dalamnya. Dua himpunan bisa saja sama walau disajikan dengan cara yang berbeda[12], seperti urutan anggotanya tidak sama atau dua himpunan itu dinyatakan dengan penggambaran yang berbeda. Himpunan dan disebut sama, jika keduanya memiliki anggota yang sama[13], dengan kata lain: setiap anggota adalah anggota dan sebaliknya, setiap anggota adalah anggota .
- .
Prinsip kesamaan dua himpunan seperti ini, yakni dengan "membuka seluas-luasnya" kedua himpunan itu sehingga tampak semua anggotanya baru kemudian diperbandingkan, sering dirumuskan sebagai aksioma perluasan[8]. Dengan prinsip ini kesamaan dan dapat diketahui. Perhatikan bahwa urutan tidak berpengaruh dalam himpunan, dan perulangan anggota yang sama hanya dihitung satu kali. Contoh lainnya, kita dapat mengatakan bahwa himpunan tiga bilangan prima pertama sama dengan himpunan akar-akar persamaan . Apabila seluruh anggota kedua himpunan itu didaftarkan, keduanya sama-sama .
Himpunan bagian
Jika setiap anggota termasuk dalam , maka himpunan dikatakan himpunan bagian dari himpunan , ditulis sebagai . Secara formal, definisi ini dapat dirumuskan sebagai berikut:
.
Dengan menggunakan definisi himpunan bagian, kesamaan dua himpunan juga dapat dinyatakan sebagai berikut:
- .
Definisi di atas sangat berguna untuk membuktikan bahwa dua himpunan dan adalah sama. Pertama, buktikan dahulu adalah himpunan bagian , kemudian buktikan bahwa adalah himpunan bagian .
Banyak anggota himpunan
Kardinalitas suatu himpunan dapat dimengerti sebagai ukuran banyaknya anggota yang ada dalam himpunan tersebut.
Secara formal, dua himpunan dan memiliki kardinalitas yang sama, jika terdapat korespondensi satu-satu yang memetakan pada .
Jika suatu himpunan ekivalen dengan himpunan , yaitu himpunan semua bilangan asli, maka himpunan tersebut disebut himpunan terbilang.[14] Kardinalitas dari himpunan tersebut disebut sebagai kardinalitas . Jika suatu himpunan memiliki kardinalitas yang kurang dari kardinalitas , maka himpunan tersebut adalah himpunan berhingga.
Suatu himpunan disebut terhitung jika himpunan tersebut adalah berhingga atau terbilang.
Himpunan yang tidak terhitung disebut himpunan tak terhitung. Contoh dari himpunan ini adalah himpunan semua bilangan riil. Kardinalitas dari himpunan jenis ini disebut sebagai kardinalitas . Pembuktian bahwa bilangan riil tidak denumerabel dapat menggunakan pembuktian diagonal. Himpunan bilangan riil dalam interval (0,1) juga memiliki kardinalitas , karena terdapat korespondensi satu-satu dari himpunan tersebut dengan himpunan seluruh bilangan riil, yang salah satunya adalah .
Syarat keanggotaan himpunan
Himpunan dapat didefinisikan dengan merumuskan syarat yang harus dipenuhi seluruh anggotanya. Dengan syarat ini suatu himpunan baru dapat dibentuk dari himpunan yang telah ada dengan cara mengambil anggota himpunan itu yang memenuhi syarat yang diberikan. Himpunan bilangan genap misalnya, terbentuk dari himpunan bilangan asli yang habis dibagi dua, ditulis sebagai:
- Gagal mengurai (kesalahan sintaks): {\displaystyle \{x\in \mathbb{Z}|x \text{genap}}}
Operasi himpunan
Gabungan
Gabungan himpunan dan . adalah himpunan yang anggotanya adalah anggota A atau B. Dinotasikan .
Contoh:
- {1, 2} ∪ {1, 2} = {1, 2}.
- {1, 2} ∪ {2, 3} = {1, 2, 3}.
- {Budi} ∪ {Dani} = {Budi, Dani}.
Beberapa sifat dasar gabungan:
- A ⊆ (A ∪ B).
- A ⊆ B jika dan hanya jika A ∪ B = B.
Irisan
Irisan himpunan dan . adalah himpunan yang anggotanya adalah anggota A dan B. Dinotasikan .
Jika , maka A dan B dapat dikatakan saling pisah.
Contoh:
- {1, 2} ∩ {1, 2} = {1, 2}.
- {1, 2} ∩ {2, 3} = {2}.
- {Budi, Cici} ∩ {Dani, Cici} = {Cici}.
- {Budi} ∩ {Dani} = ∅.
Beberapa sifat dasar irisan:
- A ∩ B ⊆ A.
- A ⊂ B jika dan hanya jika A ∩ B = A.
Komplemen
Pelengkap (komplemen) himpunan adalah himpunan yang anggotanya bukan anggota . Dinotasikan atau .
Contoh:
- {1, 2} \ {1, 2} = ∅.
- {1, 2, 3, 4} \ {1, 3} = {2, 4}.
Beberapa sifat dasar komplemen:
- A \ B ≠ B \ A untuk A ≠ B.
- (A′)′ = A.
- A \ A = ∅.
- A \ B = A ∩ B′.
Konsep komplemen dapat diperluas menjadi beda setangkup (pengurangan himpunan), jika diterapkan untuk himpunan A dan B atau A - B menghasilkan
Contohnya, diferensi simetris antara:
- {7, 8, 9, 10} dan {9, 10, 11, 12} adalah {7, 8, 11, 12}.
- {Ana, Budi, Dedi, Felix} dan {Budi, Cici, Dedi, Ela} adalah {Ana, Cici, Ela, Felix}.
Hasil Kali Kartesian
atau perkalian himpunan merupakan operasi yang menggabungkan anggota suatu himpunan dengan himpunan lainnya. Perkalian himpunan antara A dan B didefinisikan dengan A × B. Anggota himpunan | A × B | adalah pasangan terurut (a,b) dimana a adalah anggota himpunan {\displaystyle A} dan b adalah anggota himpunan B.
Contoh:
- {1, 2} × {x, y} = {(1, x), (1, y), (2, x), (2, y)}.
- {1, 2} × {a, b, c} = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c) }.
- {1, 2} × {1, 2} = {(1, 1), (1, 2), (2, 1), (2, 2)}.
Beberapa sifat dasar himpunan perkalian:
- A × ∅ = ∅.
- A × (B ∪ C) = (A × B) ∪ (A × C).
- (A ∪ B) × C = (A × C) ∪ (B × C).
- | A × B | = | B × A | = | A | × | B |.
Lihat juga
- Kelas (teori himpunan), himpunan dari himpunan-himpunan.
- Aljabar himpunan, sifat-sifat operasi himpunan.
- Fungsi karakteristik, fungsi yang menunjukkan apakah sesuatu itu anggota himpunan atau bukan.
Referensi
- ^ Afidah Khairunnisa (2018). Matematika Dasar. Depok: Rajawali Pers. ISBN 978-979-769-764-8.
- ^ Hakim., Nasoetion, Andi (1982). Landasan matematika. Bhratara Karya Aksara. OCLC 974924773.
- ^ Prof. Dr. Wahyudin M.Pd. (2019). Hakikat dan Sejarah Matematika. Tanggerang Selatan: Universitas Terbuka.
- ^ Ferreirós, José (2020). Zalta, Edward N., ed. The Stanford Encyclopedia of Philosophy (edisi ke-Summer 2020). Metaphysics Research Lab, Stanford University.
- ^ Dumairy (2003). Matematika Terapan Untuk Bisnis dan Ekonomi. Yogyakarta: BPFE.
- ^ Halmos, Paul Richard (1960). Naive Set Theory (dalam bahasa Inggris). Van Nostrand. ISBN 978-3-540-90092-4.
- ^ Oliver, Alex; Smiley, Timothy (2006). "What Are Sets and What Are They For?". Philosophical Perspectives. 20: 123–155. ISSN 1520-8583.
- ^ a b c Lipschutz, Seymour (1995). Teori Himpunan. Diterjemahkan oleh Pantur Silaban. Jakarta: Erlangga.
- ^ Walpole, Ronald E. (1995). Pengantar Statistika. Diterjemahkan oleh Ir. Bambang Sumantri. Jakarta: Gramedia Pustaka Utama.
- ^ Dr. Jaka Nugraha (2020). Pengantar Peluang dan Distribusi. Sleman: Deepublish.
- ^ Marsudi (2010-10-08). Logika dan Teori Himpunan. Universitas Brawijaya Press. ISBN 978-979-8074-51-6.
- ^ Rinaldi Munir (2010). Matematika Diskrit. Bandung: Informatika Bandung.
- ^ Julan Hernadi (2021). Fondasi Matematika & Metode Pembuktian. Ponorogo: UMPO Press.
- ^ Hendra Gunawan (2017). Menuju Tak Terhingga. Bandung: ITB Press.
Bacaan lanjutan
- Dauben, Joseph W., Georg Cantor: His Mathematics and Philosophy of the Infinite, Boston: Harvard University Press (1979) ISBN 978-0-691-02447-9.
- Halmos, Paul R., Naive Set Theory, Princeton, N.J.: Van Nostrand (1960) ISBN 0-387-90092-6
- Stoll, Robert R., Set Theory and Logic, Mineola, N.Y.: Dover Publications (1979) ISBN 0-486-63829-4
- Velleman, Daniel, How To Prove It: A Structured Approach, Cambridge University Press (2006) ISBN 978-0-521-67599-4