Luas

kuantitas yang menyatakan luas dari bidang dua dimensi, atau planar lamina, dalam sebuah pesawat
Revisi sejak 31 Desember 2021 15.58 oleh Dedhert.Jr (bicara | kontrib) (memperbaiki istilah matematika seperti "difference" diartikan "selisih", bukan "perbedaan" dan "area" umumnya diartikan "luas".)

Luas atau keluasan (bahasa Inggris: area) adalah besaran yang menyatakan ukuran dua dimensi (dwigatra) suatu bagian permukaan yang dibatasi dengan jelas, biasanya suatu daerah yang dibatasi oleh kurva tertutup. Luas permukaan menyatakan luasan permukaan suatu benda padat tiga dimensi (trigatra). Dalam aplikasi, luas permukaan bumi, yang dipakai dalam pengukuran lahan dan merupakan suatu luasan permukaan, kerap dianggap sebagai luas dua dimensi bidang datar apabila luasan itu tidak terlalu besar relatif terhadap luas permukaan total bumi.

Luas
Simbol umumA
Satuan SIMeter persegi [m2]
Dalam satuan pokok SIm2

Satuan luas

Satuan luas pokok menurut Sistem Internasional adalah meter persegi, sedangkan menurut sistem Imperial adalah kaki persegi. Ukuran yang berlaku nasional dan internasional bersifat eksak, sedangkan yang dipakai secara lokal dapat agak bervariasi. Untuk satuan lainnya yang biasa dipakai sehari-hari dapat dilihat di bawah.

Ukuran internasional dan nasional

  • meter persegi (m2)
  • are = tumbuk (di Jambi) = 100 meter persegi = 100 sentiare (ca)
  • hektare (ha) = 100 are = 10.000 meter persegi
  • kilometer persegi (km2) = 100 hektare = 10 000 are = 1.000.000 meter persegi
  • kaki persegi = 144 (= 12 × 12) inci persegi = 0,092 903 04 meter persegi
  • yard (ela) persegi = 9 (= 3 × 3) kaki persegi = 0,836 127 36 meter persegi
  • ekar (lebih dikenal di Malaysia) = acre = 10 rantai persegi (= satu furlong dikalikan satu rantai = 4.840 yard persegi = 43.560 kaki persegi = 4.046,856 422 4 meter persegi
  • mil persegi = 640 ekar = 2,589 988 110 336 kilometer persegi

Ukuran lokal Indonesia

Beberapa satuan luas (terutama untuk lahan) yang bersifat lokal dikenal di Indonesia.

  • ubin (nasional) = ru (Jawa Tengah) = tumbak/tombak (Jawa Barat) = 14,0625 (= 3,75 × 3,75) meter persegi
  • bahu (bau, bouw) = 500 ubin = 7.031,25 meter persegi (≈ 0,7 ha) (lihat artikelnya untuk variasi ukuran)
  • anggar (di Kalimantan Barat) ≈ 1/33 hektare
  • borong (di Kalimantan Barat) = 1/6 hektare
  • kesuk (di Jawa Mataraman), bervariasi dari 1.000 meter persegi hingga 1/6 hektare.
  • rakit (Pantura Jawa) ≈ 1.000 meter persegi
  • rantai (sebenarnya rantai persegi, dipakai di perkebunan Sumatra) = 484 (22 × 22) yard persegi = 404,685 644 24 meter persegi

Sejarah

Luas lingkaran

Pada abad ke-5 SM, Hippocrates dari Chios adalah orang pertama yang menunjukkan bahwa luas cakram (daerah yang dikelilingi lingkaran) sebanding dengan kuadrat diameternya, sebagai bagian dari kuadratur dari Garis pada Hippocrates,[1] tetapi tidak mengidentifikasi konstanta proporsionalitas. Eudoxus dari Cnidus, juga pada abad ke-5 SM, juga menemukan bahwa luas sebuah cakram sebanding dengan radius kuadratnya.[2]

Selanjutnya, Buku I Euclid's Elements membahas persamaan luas antara gambar dua dimensi. Ahli matematika Archimedes menggunakan perkakas geometri Euklides untuk menunjukkan bahwa luas di dalam lingkaran sama dengan luas segitiga siku-siku yang alasnya memiliki panjang keliling lingkaran dan yang tingginya sama dengan jari-jari lingkaran, dalam bukunya Pengukuran Lingkaran. (Kelilingnya 2πr, dan luas segitiga adalah setengah alas dikalikan tinggi, menghasilkan luas πr2 untuk disk.) Archimedes mendekati nilai π (dan karenanya luas lingkaran radius-satuan) dengan [[Luas disk# Metode penggandaan#Archimedes|metode penggandaannya]], di mana dia menuliskan segitiga biasa dalam lingkaran dan mencatat luasnya, lalu gandakan jumlah sisinya untuk menghasilkan segi enam yang teratur, kemudian berulang kali menggandakan jumlah sisi karena luas poligon semakin dekat dan dekat dengan lingkaran (dan lakukan hal yang sama dengan poligon berbatas.

Ilmuwan Swiss Johann Heinrich Lambert pada tahun 1761 membuktikan bahwa π, rasio luas lingkaran terhadap radius kuadratnya, adalah irasional, artinya itu tidak sama dengan hasil bagi dari dua bilangan bulat apa pun.[3] Pada tahun 1794, ahli matematika Prancis Adrien-Marie Legendre membuktikannya π2 tidak rasional; ini juga membuktikan bahwa π tidak rasional.[4] Pada tahun 1882, ahli matematika Jerman Ferdinand von Lindemann membuktikan bahwa π adalah transendental (bukan solusi dari persamaan polinomial dengan koefisien rasional), mengkonfirmasikan dugaan yang dibuat oleh Legendre dan Euler.[3]:p. 196

Luas segitiga

Heron (atau Hero) dari Aleksandria menemukan apa yang dikenal sebagai rumus Heron untuk luas segitiga dalam segi sisinya, dan bukti dapat ditemukan dalam bukunya, Metrica, yang ditulis sekitar tahun 60 Masehi. Telah disarankan bahwa Archimedes mengetahui rumus tersebut lebih dari dua abad sebelumnya,[5] dan karena Metrica adalah kumpulan pengetahuan matematika yang tersedia di dunia kuno, ada kemungkinan rumus tersebut mendahului referensi yang diberikan dalam pekerjaan itu.[6]

Pada tahun 499 Aryabhata, seorang matematikawan-astronom hebat dari zaman klasik matematika India dan astronomi India, menyatakan luas segitiga sebagai satu-setengah alas kali tinggi di Aryabhatiya (bagian 2.6).

Sebuah formula yang setara dengan Heron ditemukan oleh orang Cina secara terpisah dari orang Yunani. Itu diterbitkan pada 1247 di Shushu Jiuzhang ("Risalah Matematika dalam Sembilan Bagian"), ditulis oleh Qin Jiushao.

Luas segiempat

Pada abad ke-7 M, Brahmagupta mengembangkan rumus yang sekarang dikenal sebagai rumus Brahmagupta, untuk luas segiempat siklik (segiempat tertulis dalam lingkaran) dalam hal sisi-sisinya. Pada tahun 1842, ahli matematika Jerman Carl Anton Bretschneider dan Karl Georg Christian von Staudt secara independen menemukan rumus, dikenal sebagai rumus Bretschneider, untuk luas segiempat mana pun.

Luas poligon umum

Pengembangan Koordinat Kartesius oleh René Descartes pada abad ke-17 memungkinkan pengembangan rumus surveyor untuk luas poligon dengan lokasi titik yang diketahui oleh Gauss pada abad ke-19.

Luas ditentukan menggunakan kalkulus

Perkembangan kalkulus integral di akhir abad ke-17 menyediakan alat yang nantinya dapat digunakan untuk menghitung luas yang lebih rumit, seperti luas elips dan luas permukaan dari berbagai objek tiga dimensi melengkung.

Definisi formal

Pendekatan untuk mendefinisikan apa yang dimaksud dengan "luas" adalah melalui aksioma . "Luas" dapat didefinisikan sebagai fungsi dari kumpulan   dari gambar bidang jenis khusus (disebut himpunan terukur) ke himpunan bilangan real, yang memenuhi sifat berikut:

  • Untuk semua   dalam  ,  .
  • Jika   dan   berada di  , maka   dan  . Dan juga,  .
  • Jika   dan   berada di   dengan  , maka   berada di   dan  .
  • Jika himpunan   dalam   dan   kongruen dengan T maka T juga dalam M dan a ( S ) = a ( T ).
  • Setiap persegi panjang   adalah di  . Jika persegi panjang memiliki panjang   dan lebarnya   maka  .
  • Misalkan   adalah himpunan yang tertutup antara dua daerah langkah   dan  . Sebuah daerah langkah dibentuk dari gabungan hingga persegi panjang damping yang terletak di basis umum, yaitu  . Jika ada bilangan tunggal   sehingga   untuk semua daerah langkah   dan  , maka  .

Sifat di atas dapat dibuktikan bahwa fungsi luas benar-benar ada.[7]

Rumus

Rumus poligon

Untuk poligon takberpotongan-diri (sederhana), koordinat kartesius   dengan   dan n-verteksnya diketahui, luas tersebut diberikan oleh rumus surveyor

 

di mana ketika  , maka   dinyatakan sebagai modulus   dan mengacu ke 0.

Lingkaran

 
Sebuah lingkaran yang membentuk bagian-bagian menjadi persegi panjang.

Diberikan   adalah jari-jari pada sebuah lingkaran. Lingkaran tersebut memotong menjadi bagian yang sama besar (seperti pada gambar di samping). Setiap bagian yang dipotong mirip seperti segitiga. Bila disusun menjadi persegi panjang, maka didapati tingginya adalah jari-jari lingkaran.dan panjangnya adalah keliling lingkaran,  . Maka, didapati luas pada lingkaran:[8]

 

Luas dalam kalkulus

 
Integral dapat ditinjau sebagai mengukur luas di bawah kurva, yang didefinisikan oleh  a antara dua titik (yaitu   dan  ).
 
Luas antara dua grafik dapat dievaluasi dengan menghitung selisih antara integral dari dua fungsi.
  • Luas antara kurva bernilai positif dan sumbu horizontal, diukur antara dua nilai a dan b (b didefinisikan sebagai lebih besar dari dua nilai) pada sumbu horizontal, diberikan oleh integral dari a ke b dari fungsi yang mewakili kurva: [9]
 
  • Luas antara grafik dua fungsi sama dengan integral dari satu fungsi , f ( x ), minus integral dari fungsi lainnya, g ( x ):  where   adalah kurva dengan nilai y yang lebih besar.
  • Luas yang dibatasi oleh fungsi r = r (θ) yang dinyatakan dalam koordinat polar adalah:[9]
 
  • Luas tertutup oleh kurva parametrik   dengan titik akhir   diberikan oleh garis integral:
  ( Lihat teorema Green ) atau komponen   dari: 

Daerah yang dibatasi antara dua fungsi kuadrat

Untuk menemukan luas yang dibatasi antara dua fungsi kuadrat, kita kurangi satu dari yang lain untuk menuliskan perbedaannya sebagai

 

di mana   adalah batas atas kuadratik dan   adalah batas bawah kuadratik. Dapat menentukanm diskriminan dari   sebagai [10][11]

 

Rumus dii atas tetap valid jika salah satu fungsi pembatas adalah linear, bukan kuadratik.

Rumus luas

 
Contoh-contoh bangun dua dimensi

Luas suatu bangun dua dimensi dapat dihitung dengan menggunakan elemen satuan luas berupa persegi (atau bentuk lain) yang diketahui ukurannya. Luas bangun yang akan diukur merupakan jumlah elemen satuan luas yang menutupinya. Untuk bangun-bangun yang memiliki keteraturan terdapat rumus-rumus yang dapat digunakan bergantung pada karakteristik bangun dua dimensi yang dimaksud.

Bentuk Rumus luas Variabel
Bujur sangkar/Persegi   sisi (s)
Persegi panjang   panjang (p), lebar (l)
Lingkaran   jari-jari (r)
Segitiga   alas (a), tinggi (t)
Jajar genjang   alas (a), tinggi (t)
Trapesium   alas atas (a), alas bawah (b), tinggi (t)
Belah ketupat   diagonal (d1 & d2)
Layang-layang   diagonal (d1 & d2)
Elips   jari-jari datar (a), jari-jari tegak (b)
Luas daerah (dibutuhkan kalkulus)  

Lihat pula

Referensi

  1. ^ Heath, Thomas L. (2003), Manual Matematika Yunani, Courier Dover Publications, hlm. 121–132, ISBN 978-0-486-43231-1, diarsipkan dari versi asli tanggal 2016-05-01 
  2. ^ Stewart, James (2003). Variabel tunggal transendental awal kalkulus (edisi ke-5th.). Toronto ON: Brook/Cole. hlm. 3. ISBN 978-0-534-39330-4. However, by indirect reasoning, Eudoxus (fifth century B.C.) used exhaustion to prove the familiar formula for the area of a circle:   
  3. ^ a b Arndt, Jörg; Haene l, Christoph (2006). Pi Unleashed. Springer-Verlag. ISBN 978-3-540-66572-4. Diakses tanggal 2013-06-05.  Terjemahan bahasa Inggris oleh Catriona dan David Lischka.
  4. ^ Eves, Howard (1990), An Introduction to the History of Mathematics (edisi ke-6th), Saunders, hlm. 121, ISBN 978-0-03-029558-4 
  5. ^ Heath, Thomas L. (1921). A History of Greek Mathematics (Vol II). Oxford University Press. hlm. 321–323. 
  6. ^ (Inggris) Weisstein, Eric W. "Rumus Heron". MathWorld. 
  7. ^ Moise, Edwin. Elementary Geometry from an Advanced Standpoint . Addison-Wesley Pub. Co. Diakses tanggal 15 Juli 2012. 
  8. ^ Salamah, Umi (2015). Berlogika dengan Matematika untuk Kelas VIII SMP dan MTs. hlm. 130. ISBN 978-979-018-702-3. 
  9. ^ a b Kesalahan pengutipan: Tag <ref> tidak sah; tidak ditemukan teks untuk ref bernama MathWorld
  10. ^ Matematika. PT Grafindo Media Pratama. hlm. 51–. ISBN 978-979-758-477-1. Diarsipkan dari versi asli tanggal 2017-03-20. 
  11. ^ Get Success UN +SPMB Matematika. PT Grafindo Media Pratama. hlm. 157–. ISBN 978-602-00-0090-9. Diarsipkan dari versi asli tanggal 2016-12-23.