Turunan

operasi dalam kalkulus
Revisi sejak 19 Maret 2022 06.13 oleh Dedhert.Jr (bicara | kontrib) (menambahkan konten terjemahan)

Dalam matematika, turunan atau derivatif dari sebuah fungsi adalah cara mengukur sensitivitas perubahan nilai fungsi terhadap perubahan pada nilai variabelnya. Sebagai contoh, turunan dari posisi sebuah benda bergerak terhadap waktu mengukur kecepatan benda bergerak ketika waktu berjalan. Turunan adalah alat penting dalam kalkulus.

Grafik fungsi (warna hitam) dan garis tangen pada fungsi (warna merah). Kemiringan dari garis tangen sama dengan turunan fungsi pada titik tersebut.

Turunan sebuah fungsi satu variabel di suatu titik, jika itu ada, adalah kemiringan dari garis singgung dari grafik fungsi di titik tersebut. Garis singgung adalah hampiran (aproksimasi) linear terbaik dari fungsi di sekitar titik tersebut. Konsep turunan dapat diperumum untuk fungsi multivariabel. Dalam perumuman ini, turunan dianggap sebagai transformasi linear, dengan translasi yang sesuai, menghasilkan hampiran linear dari grafik fungsi multivariabel tersebut. Matriks Jacobi adalah matriks yang merepresentasikan transformasi linear terhadap suatu basis yang ditentukan. Matriks ini dapat ditentukan dengan turunan parsial dari variabel-variabel independen. Pada fungsi multivariabel bernilai real, matriks ini tereduksi menjadi vektor gradien.

Proses menemukan turunan disebut diferensiasi. Kebalikan proses ini disebut dengan antiturunan. Teorema fundamental kalkulus menyatakan hubungan diferensiasi dengan integrasi. Turunan dan integral adalah dua operasi dasar dalam kalkulus satu-variabel.

Konsep turunan fungsi yang universal banyak digunakan dalam berbagai cabang matematika maupun bidang ilmu yang lain. Dalam bidang ekonomi, turunan digunakan untuk menghitung biaya marginal, total penerimaan, dan biaya produksi. Bidang biologi menggunakan turunan untuk menghitung laju pertumbuhan mikroorganisme, dalam bidang fisika untuk menghitung kepadatan kawat, dalam bidang kimia untuk menghitung laju pemisahan, dalam bidang geografi untuk menghitung laju pertumbuhan penduduk, dan masih banyak lagi.

Definisi

Sebuah fungsi dengan variabel real,  , dikatakan terdiferensialkan pada suatu titik   di domainnya, jika domain fungsi tersebut mengandung suatu interval buka   yang beranggotakan  , dan nilai limit

 ada. Hal ini mengartikan bahwa, untuk setiap bilangan real positif   (bahkan jika nilainya sangat kecil), akan ada suatu bilangan real positif   sedemikian sehingga, untuk semua h yang memenuhi   dan  , menyebabkan nilai   terdefinisi dan dengan bar vertikal menyatakan nilai mutlak (lihat definisi epsilon-delta dari limit).

Jika fungsi   terdiferensialkan di  , dengan kata lain jika nilai limit   ada, maka nilai limit ini disebut turunan dari   di  , dan dinyatakan dengan   atau   (dibaca "turunan dari   terhadap   di  " atau "dy per dx di  ").

Penjelasan

Secara informal, turunan dari sebuah fungsi y = f(x) dengan variabel x adalah ukuran dari rasio perubahan nilai y terhadap perubahan nilai variabel x. Jika x dan y adalah bilangan real, dan jika grafik fungsi f diplot terhadap x, turunan dari fungsi ini pada sembarang titik adalah kemiringan dari grafik pada titik tersebut.

 
Kemiringan dari fungsi linear y = f(x) = mx + b adalah  

Kasus sederhana dari fungsi f(x) adalah fungsi linear yang memiliki persamaan y = f(x) = mx + b, dengan bilangan real m dan b. Kemiringan dari fungsi ini, m, dinyatakan dengan

 

dengan simbol Δ (Delta) adalah singkatan untuk "perubahan nilai", dan simbol   dan   masing-masing menyatakan besar perubahan yang terjadi. Sebagai contoh, Persamaan di atas berlaku, karena dan menghasilkan persamaan   yang memberikan persamaan kemiringan dari suatu garis.

Nilai perubahan sebagai nilai limit
Gambar 1. Garis singgung pada (x, f(x))
Gambar 2. Garis sekan pada grafik fungsi y= f(x) yang melalui titik (x, f(x)) dan (x + h, f(x + h))
Gambar 3. Garis singgung sebagai limit dari garis sekan
Gambar 4. Ilustrasi animasi: garis singgung (turunan) sebagai limit dari garis-garis sekan

Jika fungsi f tidak linear (maksudnya grafik fungsi bukan berupa garis lurus), maka perubahan nilai y dibagi dengan perubahan nilai x dapat berubah-ubah tergantung nilai perubahan nilai x yang dipilih. Turunan adalah metode untuk menentukan nilai unik dari perbandingan perubahan nilai tersebut, yang tidak tergantung besar perubahan   melainkan titik x yang dipilih. Metode menentukan turunan dapat diilustrasikan lewat Gambar 1 sampai Gambar 3, yang menggambarkan nilai limit dari perbandingan Δy / Δx dengan besar Δx menuju 0.

Asal-usul definisi

 
Garis sekan yang berubah menjadi garis singgung ketika  .

Salah satu cara umum untuk menyatakan cara diferensiasi yang intuitif ke dalam definisi yang matematis adalah dengan mendefinisikan turunan sebagai limit dari perbandingan dua bilangan real.[1] Pendekatan ini dapat dijabarkan sebagai berikut.

Misalkan f adalah fungsi bernilai real yang terdefinisi pada suatu lingkungan buka dari suatu bilangan real a. Dalam geometri, garis singgung dari grafik fungsi f di a adalah suatu garis unik yang melalui titik (a, f(a)) dan tidak memotong fungsi f di sekitar titik (a, f(a)). Turunan dari y terhadap x di a secara geometris adalah besar kemiringan dari garis singgung grafik f di (a, f(a)). Besar kemiringan garis singgung akan sangat mirip dengan besar kemiringan garis yang melalui titik (a, f(a)) dan sebuah titik lain di grafik yang dekat dengannya, sebagai contoh (a + h, f(a + h)). Garis yang didefinisikan ini disebut dengan garis sekan. Nilai h yang dekat dengan nol akan memberikan hampiran (dugaan, aproksimasi) yang baik mengenai besar kemiringan garis singgung; dan secara umum, nilai (mutlak) h yang semakin kecil akan memberikan hampiran yang lebih baik. Besar kemiringan m dari garis sekan adalah perbedaan nilai y antara dua titik tersebut, dibagi dengan perbedaan nilai x pada dua titik yang sama, dengan kata lain Limit digunakan untuk mengubah nilai hampiran ke nilai yang pasti (exact). Jika nilai dari limit ketika h menuju nol ada, maka nilai ini menyatakan besar kemiringan dari garis singgung fungsi di titik (a, f(a)). Limit ini didefinisikan sebagai turunan dari fungsi f di a:

 

Jika nilai limit ada, f dikatakan terdiferensialkan di a. Notasi   adalah salah satu notasi umum untuk turunan. Definisi turunan ini mengandung hubungan yang intuitif bahwa suatu fungsi terdiferensialkan f bersifat menaik jika dan hanya jika turunannya bernilai positif, dan menurun jika dan hanya jika turunannya bernilai negatif. Fakta ini sering digunakan dalam analisis mengenai perilaku fungsi, contohnya dalam menentukan titik ekstrem fungsi.

Selain itu, turunan juga memenuhi sifat 

yang menghasilkan interpretasi yang intuitif (lihat Gambar 1) bahwa garis singgung fungsi f di a memberikan hampiran linear terbaik 

untuk nilai fungsi f di sekitar a (yakni, untuk nilai h yang kecil). Interpretasi ini adalah konsep termudah yang dapat diperumum ke kasus-kasus lainnya.

Metode subtitusi h dengan nol pada perbandingan beda tidak dapat dilakukan karena menghasilkan pembagian oleh nol. Hal ini menyebabkan besar kemiringan dari garis singgung tidak dapat ditemukan secara langsung lewat subtitusi. Besar kemiringan dapat ditentukan mendefinisikan Q(h) menjadi perbandingan (quotinent) beda sebagai fungsi dari h: 

  secara geometris menyatakan kemiringan dari garis sekan yang melalui   dan  . Jika f adalah fungsi kontinu, secara informal mengartikan grafik fungsinya berupa kurva tak putus dan tidak mengandung celah, maka fungsi Q kontinu selain di  . Jika limit   ada, maka ada cara lain memilih nilai untuk Q(0) yang membuat Q menjadi fungsi kontinu, membuat fungsi f terdiferensialkan di a, dan besar turunannya di a sama dengan Q(0). Pada praktiknya, keberadaan Q(h) yang kontinu di   ditunjukkan dengan mengubah ekspresi pada pembilang agar dapat "mencoret" semua suku h pada penyebut. Manipulasi seperti itu memungkinkan nilai limit dari Q untuk nilai h yang kecil terlihat jelas, walaupun Q masih tidak terdefinisi di  . Proses manipulasi ini dapat sangat panjang dan melelahkan untuk fungsi yang rumit, dan banyak jalan pintas digunakan untuk menyederhanakan proses.

Contoh

 
Fungsi kuadrat

Fungsi kuadrat memiliki persamaan f(x) = x2 dan diferensialkan di x = 3, dengan nilai turunan fungsi di titik tersebut adalah 6. Hasil ini didapatkan dengan menghitung limit dengan h menuju nol dari persamaan beda f(3):

 Ekspresi terakhir menunjukkan persamaan beda sama dengan ekspresi 6 + h saat   dan tidak terdefinisi saat h = 0, karena definisi dari persamaan beda. Tetapi, definisi dari limit menyatakan persamaan beda tidak harus terdefinisi saat h = 0. Nilai limit adalah hasil dari membuat variabel h menuju nol, mengartikan ekspresi 6 + h saat nilai h menuju sekecil mungkin akan menjadi: Mengartikan kemiringan dari grafik fungsi kuadrat di titik (3, 9) adalah 6, dan turunannya di x = 3 adalah  . Secara umum, perhitungan yang sama dapat digunakan untuk menunjukkan bahwa turunan fungsi kuadrat di x = a adalah  :

 

Kekontinuan dan kediferensialan

 
Fungsi tangga tidak memiliki turunan pada titik berwarna merah, karena fungsi tidak kontinu di titik tersebut.

Jika f terdiferensialkan di a, maka f harus juga kontinu di a. Sebagai contoh, pilih sembarang titik a dan misalkan fungsi tidak kontinu f sebagai fungsi tangga yang menghasilkan nilai 1 untuk semua x kurang dari a, dan menghasilkan nilai yang berbeda, misalnya 10, untuk semua nilai x yang lebih besar atau sama dengan a. Fungsi f tidak dapat memiliki turunan di titik a. Jika nilai h negatif, maka a + h akan terletak di sisi rendah dari fungsi tangga, menjadikan garis sekan dari a ke a + h akan sangat curam; dan semakin curam saat h menuju nol. Sedangkan jika h positif, maka a + h terletak pada sisi tinggi dari fungsi tangga, sehingga garis sekan dari a ke a + h tidak memiliki kemiringan (datar). Alhasil garis-garis sekan tidak menuju suatu kemiringan tertentu, mengakibatkan limit dari persamaan beda tidak ada.

 
Fungsi nilai mutlak bersifat kontinu, namun tidak dapat didiferensiasi di x = 0 karena garis sekannya tidak menghasilkan kemiringan yang sama ketika dihitung dari kiri dan dari kanan.

Tetapi, bahkan jika fungsi kontinu di suatu titik, fungsi tersebut mungkin tidak terdiferensialkan disana. Sebagai contoh, fungsi nilai mutlak f(x) = |x| bersifat kontinu di x = 0, namun tidak terdiferensialkan di titik itu. Jika h positif, maka kemiringan dari garis sekan dari 0 ke h bernilai 1, sedangkan jika h negatif, maka kemiringan garis sekan dari 0 ke h bernilai -1. Bahkan fungsi mulus tidak terdiferensialkan di titik yang garis singgungnya merupakan garis vertikal: Sebagai contoh, fungsi f(x) = x1/3 tidak terdiferensialkan di x = 0.

Secara singkat, fungsi yang terdiferensialkan adalah fungsi yang kontinu, tetapi ada fungsi kontinu yang tidak dapat didiferensialkan.

Sebagian besar fungsi pada praktiknya memiliki turunan di semua titik atau hampir semua titik. Pada awal sejarah kalkulus, banyak matematikawan mengasumsikan fungsi kontinu dapat diturunkan di banyak titik. Pada kondisi yang standar, hal ini berlaku karena kebanyakan fungsi adalah fungsi monoton atau fungsi Lipschitz. Tetapi pada tahun 1872, Weierstrass menemukan contoh pertama dari fungsi yang kontinu dimanapun namun tidak terdiferensialkan dimanapun. Contoh tersebut sekarang dikenal sebagai fungsi Weierstrass.

Turunan sebagai sebuah fungsi

 
Turunan di berbagai titik berbeda pada suatu fungsi terdiferensialkan. Pada kasus ini, besar turunannya sama dengan: 

Misalkan f adalah fungsi yang memiliki turunan di setiap titik di domainnya. Seseorang dapat mendefinisikan sebuah fungsi yang memetakan setiap titik x ke nilai dari turunan f di x. Salah satu notasi untuk menulis fungsi ini adalah  , dan disebut sebagai fungsi turunan atau turunan dari f. Terkadang f memiliki turunan pada sebagian besar, tapi tidak semua, titik di domainnya. Fungsi yang nilainya di a sama dengan   kapanpun nilai   terdefinisi, dan tidak terdefinisi di nilai-nilai yang lainnya, juga disebut turunan dari f. Fungsi ini memiliki domain yang lebih kecil daripada domain dari f.

Menggunakan ide tersebut, turunan dapat dianggap sebagai fungsi dari fungsi: Turunan adalah sebuah operator dengan domainnya adalah himpunan semua fungsi yang memiliki turunan di semua titik pada domain mereka, dan citra-nya (range) adalah himpunan berisi fungsi-fungsi. Jika operator ini dinyatakan dengan D, maka D(f) sama dengan fungsi  . Selain itu, karena D(f) adalah sebuah fungsi, nilainya dapat dihitung di titik a. Dengan menggunakan definisi dari fungsi turunan,  

Sebagai contoh, pertimbangkan fungsi f(x) = 2x; f adalah fungsi satu variabel yang bernilai real, mengartikan fungsi ini menerima sebuah angka lalu menghasilkan sebuah angka:

 

Operator D di sisi lain, tidak menerima maupun menghasilkan angka, melainkan fungsi:

 

Karena D menghasilkan sebuah fungsi, hasil dari D dapat dievaluasi di suatu titik. Sebagai contoh, ketika D diterapkan pada fungsi kuadrat xx2, D akan menghasilkan fungsi x ↦ 2x, yang dapat diberi nama f(x). Fungsi hasil ini selanjutnya dapat digunakan untuk menghitung f(1) = 2, f(2) = 4, dan seterusnya.

Turunan tingkat tinggi

Misalkan   adalah fungsi terdiferensialkan, dan misalkan   sebagai fungsi turunannya. Turunan dari   (jika ada) ditulis sebagai   dan disebut turunan kedua dari  . Serupa dengan itu, turunan dari turunan kedua, jika ada, ditulis sebagai   dan disebut turunan ketiga dari  . Melanjutkan proses ini, turunan ke-n dari fungsi dapat didefinisikan, jika turunan tersebut ada, sebagai turunan dari turunan ke-(n−1) dari fungsi. Turunan berulang ini disebut turunan tingkat tinggi. Turunan ke-n juga dapat dituliskan sebagai  . Jika   menyatakan posisi suatu objek pada waktu  , maka turunan tingkat tinggi dari   memiliki interpretasi khusus dalam bidang fisika. Turunan pertama dari   menyatakan kecepatan objek, turunan kedua menyatakan besar akselerasinya, sedangkan turunan ketiga dari   menyatakan sentakan.

Sebuah fungsi   tidak harus memiliki turunan (sebagai contoh, karena fungsi tersebut tidak kontinu). Serupa dengan itu, bahkan jika   memiliki turunan, fungsi turunan keduanya mungkin tidak ada. Sebagai contoh, misalkan fungsi

 

Perhitungan menunjukkan bahwa   adalah fungsi terdiferensialkan dengan besar turunan di   dinyatakan sebagai

 

  adalah dua kali fungsi nilai mutlak dari  , dan tidak memiliki turunan di nol. Contoh yang mirip dapat dibuat untuk menunjukkan sebuah fungsi dapat memiliki turunan ke-k namun tidak memiliki turunan ke-(k + 1). Jika suatu fungsi dapat diturunkan k kali berturut-turut dan turunan ke-k-nya bersifat kontinu, maka fungsi tersebut merupakan anggota kelas keterdiferensialan Ck. Sebuah fungsi yang memiliki tak hingga banyaknya turunan disebut fungsi mulus.

Pada garis bilangan real, setiap fungsi polinomial terdiferensialkan tak hingga kali. Dengan menggunakan aturan perhitungan turunan (lihat bagian di bawah), sebuah polinomial berderajat n akan menjadi fungsi konstan jika diturunkan sebanyak n kali. Semua turunan fungsi tersebut selanjutnya sama dengan 0 (ada). Hal ini mengartikan fungsi polinomial termasuk fungsi mulus.

Turunan tingkat tinggi dari sebuah fungsi   di suatu titik   memberikan hampiran polinomial terbaik untuk fungsi tersebut di sekitar  . Sebagai contoh, jika   terdiferensialkan dua kali, maka

 

dalam artian bahwa

 

Jika   terdiferensialkan tak hingga kali, maka persamaan turunan kedua dapat diteruskan menjadi deret Taylor untuk fungsi   yang dievaluasi di x + h sekitar titik x.

Titik infleksi

Sebuah titik dimana nilai turunan sebuah fungsi berubah tanda disebut dengan titik infleksi.[2] Di titik infleksi, nilai turunan kedua mungkin bernilai nol, contohnya pada kasus titik x = 0 pada fungsi  , atau mungkin tidak terdefinisi, contohnya untuk titik x = 0 pada fungsi  . Di titik infleksi, bentuk fungsi berubah dari fungsi konveks (cembung) menjadi fungsi konkaf (cekung), atau sebaliknya.

Notasi turunan

Beberapa notasi untuk menyatakan turunan dikembangkan pada awal perkembangan kalkulus, dan beberapa notasi tersebut masih digunakan saat ini.

Notasi Leibniz

 
Gottfried Wilhelm von Leibniz (1646 - 1716), filsuf Jerman, matematikawan, dan nama notasi matematika yang paling luas digunakan dalam kalkulus.

Simbol  ,  , dan   diperkenalkan oleh Gottfried Wilhelm Leibniz pada tahun 1675.[3] Notasi ini masih umum digunakan ketika persamaan   ingin dipandang sebagai hubungan antara variabel terikat dan variabel bebas. Turunan pertama dengan notasi ini ditulis sebagai dan awalnya dianggap sebagai perbandingan dua besaran infinitesimal ("infinitely small", "yang tak hingga kecilnya"). Turunan tingkat tinggi, yakni turunan ke-n dari  , dituliskan sebagai Notasi tersebut merupakan 'singkatan' dari penerapan operator turunan secara berulang. Sebagai contoh, notasi turunan kedua[4]

 

Dengan menggunakan notasi Leibniz, turunan dari   di titik   dapat ditulis dalam dua cara berbeda:

 

Notasi Leibniz memungkinkan penulisan variabel diferensiasi (sebagai penyebut), yang berperan dalam turunan parsial. Notasi ini juga dapat digunakan untuk menulis aturan rantai sebagai[Note 1]

 

Selain itu, notasi Leibniz memperlihatkan hubungan variabel yang sesuai dengan analisis dimensi. Sebagai contoh, turunan kedua   memiliki dimensi yang sama dengan  .

Notasi Lagrange

Terkadang disebut dengan notasi petik/prima (prime notation),[5] salah satu notasi turunan yang umum lainnya adalah notasi yang diperkenalkan Joseph-Louis Lagrange. Notasi ini menggunakan simbol prima, yang mirip dengan simbol petik. Turunan dari fungsi   dituliskan sebagai  . Serupa dengan itu, turunan kedua dan ketiga dari fungsi ditulis sebagai

    dan    

Untuk menyatakan turunan tingkat tinggi, beberapa penulis menggunakan angka Romawi yang ditulis sebagai tika atas, sedangkan yang lain menuliskan angka dalam simbol kurung:

    atau    

Notasi yang kedua dapat diperumum untuk menghasilkan notasi   untuk turunan ke-n dari  . Notasi ini ringkas dan paling berguna ketika turunan dianggap sebagai fungsi tersendiri, berbeda dengan notasi Leibniz yang mengganggap turunan sebagai hubungan antar variabel. Nilai fungsi turunan ke-n di   dituliskan sebagai  .

Notasi Newton

Notasi Newton untuk turunan juga disebut sebagai notasi dot/titik. Notasi ini menggunakan titik yang diletakkan di atas nama fungsi, untuk merepresentasikan turunan terhadap waktu. Jika  , maka

    dan    

masing-masing menyatakan turunan pertama dan turunan kedua dari  . Notasi Newton saat ini hanya digunakan untuk turunan terhadap waktu atau terhadap panjang busur, yang umum ditemukan dalam persamaan diferensial di fisika dan geometri diferensial.[6][7] Notasi Newton, malangnya, sulit digunakan untuk turunan tingkat tinggi (turunan ke-4 atau lebih), dan tidak dapat digunakan untuk fungsi multivariabel.

Notasi Euler

Notasi yang diperkenalkan Leonhard Euler menggunakan operator diferensial  , yang ketika diterapkan pada sebuah fungsi   akan menghasilkan turunan pertama  . Turunan ke-n dengan notasi ini ditulis sebagai  . Jika   adalah variabel terikat, maka tika bawah   umum dilekatkan ke   untuk memperjelas   adalah variabel bebas. Notasi Euler selanjutnya dapat ditulis sebagai

    atau   ,

walaupun tika bawah umumnya tidak digunakan jika konteks variabel   dapat dipahami, contohnya ketika   adalah satu-satunya variabel bebas dalam ekspresi. Notasi Euler berguna dalam menyatakan dan menyelesaikan sistem persamaan diferensial linear.

Kaidah dalam menghitung

Dalam prinsip turunan, turunan fungsi dapat dihitung melalui definisi dengan meninjau perbandingan beda, dan menghitung limitnya. Pada praktiknya, ketika turunan dari beberapa fungsi sederhana diketahui, turunan fungsi lain dapat dihitung dengan mudah melalui aturan untuk memperoleh turunan fungsi yang lebih rumit dari yang sederhana.

Kaidah untuk fungsi dasar

Berikut adalah aturan untuk turunan dari fungsi yang paling dasar, dimana a bilangan real.

  • Turunan pangkat:
     
  • Fungsi eksponensial dan logaritma:
     
     
     
     
  • Fungsi trigonometri:
     
     
     
  • Fungsi invers trigonometri:
     
     
     

Kaidah yang menggabungkan fungsi

Berikut adalah beberapa aturan paling dasar dalam menghitung turunan komposisi fungsi melalui turunan dari fungsi dasar.

  • Kaidah konstanta: Jika f(x) adalah konstanta, maka
     
  • Kaidah jumlah:
      untuk semua fungsi f dan g, dan untuk semua bilangan real   dan  .
  • Kaidah darab:
      untuk semua fungsi f dan g. Dalam kasus yang istimewa, aturan ini mencakup fakta bahwa   bila   adalah konstanta. Karena menurut aturan konstanta,  .
  • Kaidah hasil-bagi:
      untuk semua fungsi f dan g di semua nilai input, dimana  .
  • Aturan rantai untuk fungsi komposisi: Jika  , maka
     

Contoh perhitungan

Turunan dari fungsi

 

adalah

 

Pada bentuk kedua dihitung menggunakan kaidah rantai dan bentuk ketiga menggunakan kaidah darab. Fungsi dasar yang diketahui seperti  ,  ,  ,  ,  , dan juga konstanta 7, juga diturunkan.

Definisi terhadap hiperreal

Karena berkaitan dengan perluasan hiperreal   dari bilangan real, turunan fungsi real   di titik real   dapat didefinisikan sebagai bayangan hasil bagiyx untuk infinitesimal x, dimana y = f(x + ∆x) − f(x). Perluasan alami f untuk hiperreal masih dilambangkan sebagai f dan turunannya dapat dikatakan ada jika bayangan adalah bebas dari pilihan infintesimal.

Turunan pada dimensi tinggi

Fungsi bernilai vektor

Sebuah fungsi bernilai vektor   terhadap sebuah variabel real akan memetakan bilangan real ke suatu vektor di suatu ruang vektor  . Sebuah fungsi bernilai vektor dapat dipecah menjadi fungsi-fungsi koordinatnya,  , mengartikan fungsi   dapat ditulis sebagai  . Contoh dari fungsi bernilai vektor adalah kurva parametrik di   atau  . Fungsi-fungsi koordinat adalah fungsi bernilai real, menjadikan definisi turunan berlaku bagi mereka semua. Turunan dari fungsi   didefinisikan sebagai sebuah vektor, disebut vektor singgung, yang koordinatnya adalah nilai turunan dari fungsi-fungsi koordinat. Dengan kata lain,

 

Secara ekuivalen, bentuk tersebut dapat ditulis sebagai

 

jika limit dari fungsi ada. Operasi pengurangan di pembilang terjadi pada vektor, bukan skalar (bilangan real). Jika turunan   ada untuk semua nilai  , maka   akan berupa fungsi bernilai vektor.

Jika vektor-vektor   adalah basis standar untuk  , maka   juga dapat ditulis sebagai  . Dengan mengasumsikan turunan fungsi bernilai vektor mempertahankan sifat kelinearan, maka turunan dari   dapat ditulis sebagai

 

menggunakan faktra setiap vektor basis bernilai konstan. Perumuman ini berguna, sebagai contoh ketika   adalah vektor posisi suatu partikel pada waktu  , turunan   dapat dipandang seabgai vektor kecepatan dari partikel pada waktu  .

Turunan parsial

Misalkan   adalah fungsi multivariabel, sebagai contoh   Fungsi   dapat dianggap sebagai keluarga fungsi satu variabel yang diindeks oleh variabel-variabel lain:

 

Dalam contoh ini, setiap nilai   akan menghasilkan sebuah fungsi   yang merupakan fungsi satu variabel. Hal ini dapat dinyatakan dengan pemetaan

 
 

Setelah suatu nilai   dipilih, misalnya  , maka   selanjutnya menentukan sebuah fungsi   yang memetakan   ke  , juga dapat ditulis sebagai  . Dalam ekspresi tersebut   adalah sebuah konstanta dan bukan sebuah variabel, menjadikan   sebagai fungsi satu variabel. Alhasil, definisi turunan untuk fungsi satu variabel berlaku:

 

Prosedur ini dapat diterapkan untuk sembarang pemilihan nilai  . Menggunakan notasi Leibniz, turunan ini menyampaikan perbandingan perubahan nilai fungsi   dalam arah  :

 

dan disebut sebagai turunan berarah dari   terhadap  . Dalam ekspresi tersebut, simbol adalah huruf d melengkung yang disebut sebagai simbol turunan parsial. Untuk membedakannya dengan huruf d yang digunakan dalam turunan satu variabel, ∂ terkadang dilafalkan sebagai "der", "del", atau "parsial", ketimbang "de".

Secara umum, turunan parsial sebuah fungsi   dalam arah   di titik   didefinisikan sebagai

 

Dalam perbandingan beda di atas, semua nilai variabel kecuali   dibuat konstan. Tindakan membuat konstan variabel-variabel ini akan menghasilkan fungsi satu variabel

 

dan dari definisi,

 

Ekspresi ini juga menunjukkan bahwa perhitungan turunan parsial dapat disederhanakan menjadi perhitungan turunan satu variabel.

Turunan parsial juga memainkan peran penting dalam pembahasan terkait fungsi bernilai vektor. Misalkan   sebagai fungsi bernilai vektor. Jika semua turunan parsial   terdefinisi di titik  , turunan-turunan parsial ini mendefinisikan sebuah vektor

 

yang disebut sebagai gradien dari   di  . Jika   terdiferensialkan di setiap titik di suatu domain, maka gradien adalah sebuah fungsi bernilai vektor   yang memetakan titik   ke vektor  . Akibatnya, gradien menentukan suatu medan vektor.

Turunan berarah

Jika   adalah fungsi bernilai real di  , maka turunan parsial   mengukur variasi turunan dalam arahan sumbu koordinat. Sebagai contoh, jika   adalah fungsi dari   dan  , maka turunan parsial   mengukur variasi di   dalam arah   dan  . Namun, turunan   tidak mengukur secara langsung variasi   pada setiap arah lainnya, contohnya di sepanjang garis diagonal  . Ini diukur menggunakan turunan berarah. Ambil vektor

 

maka turunan berarah   dalam arahan   di titik x didefinisikan melalui limit

 

Dalam beberapa kasus, definisi di atas dapat menghitung atau mengestimasi turunan berarah dengan mudah setelah mengubah panjang vektor. Ini seringkali diselesaikan dengan mengubah masalah menjadi perhitungan turunan berarah dalam arah satuan vektor. Untuk melihat bagaimana ini bekerja, misalkan bahwa   dimana   adalah satuan vektor pada arah  . Substitusi   ke perbandingan beda, maka perbandingan beda menjadi:

 

Perbandingan bedanya sama dengan   dikali perbandingan beda turunan berarah   terhadap  . Terlebih lagi, mengambil limit ketika   menuju nol sama saja dengan mengambil limit ketika   mendekati nol karena   dan   merupakan kelipatan masing-masing. Oleh karena itu,  . Karena sifat ini diukur ulang, turunan berarah seringkali hanya dianggap sebagai vektor satuan.

Jika semua turunan parsial   ada dan kontinu di  , maka semua turunan parsial menentukan turunan berarah   pada arah   melalui rumus berikut:

 

Rumus di atas merupakan hasil dari definisi turunan total, yang mengikuti bahwa turunan berarah adalah linear pada  , dalam artian bahwa  .

Definisi yang sama juga bekerja ketika   adalah fungsi yang memiliki nilai di  . Definisi tersebut diterapkan pada setiap komponen vektor. In this case, turunan berarah merupakan vektor di  .

Turunan total, diferensial total, dan matriks Jacobi

Generalisasi

Sejarah

Kalkulus, atau dikenal dalam sejarah lebih awalnya, kalkulus infinitesimal, merupakan cabang matematika yang berfokus pada konsep limit, fungsi, turunan, integral, dan deret takhingga. Isaac Newton dan Gottfried Leibniz menemukan kalkulus secara terpisah pada pertengahan abad ke-17. Namun dalam pertikaian yang pahit, Leibniz dituduh bahwa ia mencuri karya Newton dan sebaliknya. Pertikaian ini berlanjut hingga kematian mereka berdua.

Lihat pula

Catatan kaki

  1. ^ Dalam formulasi kalkulus menggunakan konsep limit, simbol du digunakan untuk menyatakan banyak hal oleh banyak penulis. Beberapa penulis tidak memandang du tidak memiliki makna tersendiri, dan hanya terdefinisi sebagai bagian dari simbol du/dx. Penulis yang lain mendefinisikan dx sebagai variabel bebas, dan du' sebagai du = dxf(x). Dalam analisis non-standar, du didefinisikan sebagai suatu infinitesimal, dan juga dapat dipandang sebagai turunan eksterior dari fungsi u. Lihat diferensial (matematika) untuk informasi lebih lanjut.

Referensi

  1. ^ Spivak 1994, chapter 10.
  2. ^ Apostol 1967, §4.18
  3. ^ Manuscript of November 11, 1675 (Cajori vol. 2, page 204)
  4. ^ Perhatikan bahwa   adalah notasi ringkas untuk  , atau, dalam kata lain diferensial kedua dari y terhadap kuadrat dari diferensial pertama dari x. Penyebut bukanlah diferensial dari x2, atau diferensial kedua dari x.
  5. ^ "The Notation of Differentiation". MIT. 1998. Diakses tanggal 24 October 2012. 
  6. ^ Evans, Lawrence (1999). Partial Differential Equations. American Mathematical Society. hlm. 63. ISBN 0-8218-0772-2. 
  7. ^ Kreyszig, Erwin (1991). Differential Geometry. New York: Dover. hlm. 1. ISBN 0-486-66721-9. 

Daftar pustaka

Buku cetak

Buku daring

Pranala luar